다양한 분야에서 활용되는 상황인지 시스템은 상황정보를 획득하기 위한 추상화 과정에서 규칙 기반의 인공기능 기술이 기존에 사용되었다. 그러나 서비스에 대한 사용자의 요구사항이 다양해지고 사용되는 데이터의 증대로 규칙이 복잡해지면서 규칙 기반 모델의 유지보수와 비정형 데이터를 처리하는데 어려움이 있다. 이러한 한계점을 극복하기 위해 많은 연구들에서는 상황인지 시스템에 기계학습 기술을 적용하였으며, 이러한 기계학습 기반의 모델을 상황인지 시스템에 사용하기 위해서는 주기적으로 학습 데이터를 제공해야 한다. 이에 기계학습 기반 상황인지 시스템에 대한 선행연구에서는 여러 개의 기계학습 모델을 적용하기 위한 학습 데이터 생성, 제공 등의 과정을 보였으나 제한된 종류의 기계학습 모델만을 적용 가능하여 확장성이 고려되어야 한다. 본 논문은 기계학습 기반의 상황인지 시스템의 확장성을 고려한 기계학습 모델의 학습 데이터 생성 방법을 제안한다. 제안하는 방법은 시스템의 확장성을 고려하여 기계학습 모델의 요구사항을 반영할 수 있는 학습 데이터 생성 모델을 정의하고 학습 데이터 생성 모듈을 바탕으로 각각의 기계학습 모델의 학습 데이터를 생성하는 것이다. 시스템의 확장성의 검증을 위해 실험에서는 노인의 건강상태 알림 서비스를 위한 심박상태 분석 모델을 대상으로 한 학습데이터 생성 스키마를 기반으로 학습데이터 생성 모델을 정의하고 실환경에서 정의된 모델을 S/W에 적용하여 학습데이터를 생성한다. 또한 생성된 학습데이터의 유효성을 검증하기 위해 사용되는 기계학습 모델에 생성한 학습데이터를 학습시켜 정확도를 비교하는 과정을 보인다.
본 논문에서는 다중 모델 기계학습 기법을 이용하여 자동 문서 분류의 성능과 신뢰도를 향상시킬 수 있는 연구와 실험 결과를 기술하였다. 기존의 다중 모델 기계 학습법들이 훈련 데이터 또는 학습 알고리즘의 편향에 의한 오류를 극복하고자 한 것인데 비해 본 논문에서 제안한 메타 학습을 이용한 하이브리드 다중 모델 방식은 이 두 가지의 오류 원인을 동시에 해소하고자 하였다. 다양한 문서 집합에 대한 실험 결과. 본 논문에서 제안한 하이브리드 다중 모델 학습법이 전반적으로 기존의 일반 다중모델 학습법들에 비해 높은 성능을 보였으며, 다중 모델의 결합 방식으로서 메타 학습이 투표 방식에 비해 효율적인 것으로 나타났다.
본 논문에서는 다중 모델 기계학습 기법을 이용하여 문서 자동 분류의 성능과 신뢰도를 향상시킬 수 있는 연구와 실험 결과를 기술하였다. 기존의 다중 모텔 기계 학습법들이 훈련 데이터 또는 학습 알고리즘의 편향에 의한 오류를 극복하고 한 것들인데 비해 본 논문에서 제안한 메타 학습을 이용한 하이브리드 다중 모델 방식은 이 두 가지의 오류 원인을 동시에 해소하고자 하였다. 다양한 문서 집합에 대한 실험 결과, 본 연구에서 제안한 하이브리드 다중 모델 학습법이 전반적으로 기존의 일반 다중모델 학습법들에 비해 높은 성능을 보였으며, 다중 모델의 결합 방식으로서 메타 학습이 투표 방식에 비해 효율적인 것으로 나타났다.
기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.
본 논문은 비구조적인 자연어 문장으로부터 두 개체 사이의 관계를 표현하는 구조적인 트리플을 밝히는 관계추출에 관한 연구를 기술한다. 사람이 직접 언어적 분석을 통해 트리플이 표현되는 형식을 입력하여 관계를 추출하는 규칙 기반 접근법에 비해 기계가 데이터로부터 표현 형식을 학습하는 기계학습 기반 접근법은 더 다양한 표현 형식을 확보할 수 있다. 기계학습을 이용하려면 모델을 훈련하기 위한 학습 데이터가 필요한데 학습 데이터가 수집되는 방식에 따라 지도 학습, 원격지도 학습 등으로 구분할 수 있다. 지도 학습은 사람이 학습 데이터를 만들어야하므로 사람의 노력이 많이 필요한 단점이 있지만 양질의 데이터를 사용하는 만큼 고성능의 관계추출 모델을 만들기 용이하다. 원격지도 학습은 사람의 노력을 필요로 하지 않고 학습 데이터를 만들 수 있지만 데이터의 질이 떨어지는 만큼 높은 관계추출 모델의 성능을 기대하기 어렵다. 본 연구는 기계학습을 통해 관계추출 모델을 훈련하는데 있어 지도 학습과 원격지도 학습이 가지는 단점을 서로 보완하여 타협점을 제시하는 학습 방법을 제안한다.
본 논문은 비구조적인 자연어 문장으로부터 두 개체 사이의 관계를 표현하는 구조적인 트리플을 밝히는 관계추출에 관한 연구를 기술한다. 사람이 직접 언어적 분석을 통해 트리플이 표현되는 형식을 입력하여 관계를 추출하는 규칙 기반 접근법에 비해 기계가 데이터로부터 표현 형식을 학습하는 기계학습 기반 접근법은 더 다양한 표현 형식을 확보할 수 있다. 기계학습을 이용하려면 모델을 훈련하기 위한 학습 데이터가 필요한데 학습 데이터가 수집되는 방식에 따라 지도 학습, 원격지도 학습 등으로 구분할 수 있다. 지도 학습은 사람이 학습 데이터를 만들어야하므로 사람의 노력이 많이 필요한 단점이 있지만 양질의 데이터를 사용하는 만큼 고성능의 관계추출 모델을 만들기 용이하다. 원격지도 학습은 사람의 노력을 필요로 하지 않고 학습 데이터를 만들 수 있지만 데이터의 질이 떨어지는 만큼 높은 관계추출 모델의 성능을 기대하기 어렵다. 본 연구는 기계학습을 통해 관계추출 모델을 훈련하는데 있어 지도 학습과 원격지도 학습이 가지는 단점을 서로 보완하여 타협점을 제시하는 학습 방법을 제안한다.
본 논문에서는 다양한 기계학습 모델을 이용한 신용 데이터 분석 기법에 대해 서술한다. 기계학습 모델은 크게 Canonical models, Committee machines, 그리고 Deep learning models로 분류된다. 이러한 다양한 기계학습 모델 중 일부 학습 모델을 기반으로 Benchmark dataset인 Credit Approval 데이터를 분석하고 성능을 평가한다. 성능 평가에는 k-fold evaluation method를 사용하며, k-fold evaluation 결과에 대한 평균 성능을 측정하기 위해 Accuracy, Precision, Recall, 그리고 F1-score가 사용되었다.
본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.
기계학습 알고리즘을 이용한 다양한 분야에서의 활용사례들이 우리 사회로 점차 확산되어가며, 기계학습을 통해 산출된 모델의 오동작을 유발할 수 있는 공격이 활발히 연구되고 있다. 특히, 한국에서는 딥러닝을 포함해 인공지능을 응용한 융합분야를 국가적 차원에서 추진하고 있으며, 만약 인공지능 모델 자체에서 발생하는 취약점을 보완하지 못하고 사전에 공격을 대비하지 않는다면, 뒤늦은 대응으로 인하여 관련 산업의 활성화가 지연될 수 있는 문제점이 발생할 수도 있다. 본 논문에서는 기계학습 모델에서, 특히 심층 신경망으로 구성되어 있는 모델에서 발생할 수 있는 공격들을 정의하고 연구 동향을 분석, 안전한 기계학습 모델 구성을 위해 필요한 시사점을 제시한다. 구체적으로, 가장 널리 알려진 적대적 사례(adversarial examples) 뿐 아니라, 프라이버시 침해를 유발하는 추론 공격 등이 어떻게 정의되는지 설명한다.
기계학습은 학습말뭉치로부터 문제를 해결하기 위한 규칙을 학습하여 모델을 생성한다. 생성된 모델의 성능을 높이기 위해서는 문제에 적합한 자질들을 많이 이용해야 하지만 많은 자질들을 사용하면 모델의 생성시간은 느려지는 것이 사실이다. 이 문제를 해결하기 위해 본 논문에서는 다단계 기법을 적용한 기계학습으로 구묶음 시스템을 제작하여 학습모델의 생성시간을 단축하고 성능을 높이는 기법을 제안한다. 많은 종류의 자질들을 두 단계로 분리하여 학습하는 기법으로 1단계에서 구의 경계를 인식하고 2단계에서 구의태그를 결정한다. 1단계의 학습자질은 어휘 정보, 품사 정보, 띄어쓰기 정보, 중심어 정보를 사용하였으며, 2단계 학습자질은 어휘 정보와 품사 정보 외에 1단계 결과에서 추출한 구의 시작 품사 정보와 끝 품사 정보, 구 정보, 구 품사 정보를 자질로 사용하였다. 평가를 위해서 본 논문에서는 ETRI 구문구조 말뭉치를 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.