• Title/Summary/Keyword: 기계학습

Search Result 1,677, Processing Time 0.037 seconds

Big Data 분석을 위한 Machine Learning

  • Lee, Jae-Gu;Lee, Tae-Hun;Yun, Seong-Ro
    • Information and Communications Magazine
    • /
    • v.31 no.11
    • /
    • pp.14-26
    • /
    • 2014
  • 본고는 빅데이터 시대에 새로운 가치를 창출할 수 있는 정보 분석을 위한 기계학습을 설명하고자 한다. 기계학습의 일반적 정의와 특성, 그리고 빅데이터 특성에 의한 기계학습의 변화를 확인하고 특별히 다양한 변화 중에서 분산 및 병렬화를 통한 스케일러블 기계학습을 중점으로 주어진 빅데이터를 효율적으로 분석할 수 있는 다양한 플랫폼들과 프레임워크들을 설명한다. 더불어 실제 다양한 응용 활용을 제공하고 있는 Google API 같은 빅데이터 분석 기계학습 프로젝트들을 통해서 기계학습을 통한 빅데이터 분석에 대한 폭넓은 이해를 전달하고자 한다.

The Present and Perspective of Quantum Machine Learning (양자 기계학습 기술의 현황 및 전망)

  • Chung, Wonzoo;Lee, Seong-Whan
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.751-762
    • /
    • 2016
  • This paper presents an overview of the emerging field of quantum machine learning which promises an innovative expedited performance of current classical machine learning algorithms by applying quantum theory. The approaches and technical details of recently developed quantum machine learning algorithms that have been able to substantially accelerate existing classical machine learning algorithms are presented. In addition, the quantum annealing algorithm behind the first commercial quantum computer is also discussed.

A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm (기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구)

  • Lee, Hohyun;Chung, Seung-Hyun;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.245-258
    • /
    • 2016
  • This paper aims to present the way to bring about significant results through performance improvement of learning algorithm in the research applying to machine learning. Research papers showing the results from machine learning methods were collected as data for this case study. In addition, suitable machine learning methods for each field were selected and suggested in this paper. As a result, SVM for engineering, decision-making tree algorithm for medical science, and SVM for other fields showed their efficiency in terms of their frequent use cases and classification/prediction. By analyzing cases of machine learning application, general characterization of application plans is drawn. Machine learning application has three steps: (1) data collection; (2) data learning through algorithm; and (3) significance test on algorithm. Performance is improved in each step by combining algorithm. Ways of performance improvement are classified as multiple machine learning structure modeling, $+{\alpha}$ machine learning structure modeling, and so forth.

Design of an Intelligent Database Platform for High-Performance Autonomic Machine Learning (고성능 자율 기계학습을 위한 인텔리전트 데이터베이스 플랫폼 설계)

  • Lim, Jongtae;Kim, Minsoo;Choi, Dojin;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.27-28
    • /
    • 2018
  • 최근 기계학습에 대한 연구들이 사회적으로 이슈가 되고 있다. 하지만 기계학습은 기계학습 모델을 만들고 세밀히 조정해야하는 복잡한 작업을 수행할 수 있는 전문 지식을 가진 사용자가 필요하다. 따라서 기계학습 과정에서 사용자가 수행하여야 하는 다양한 작업을 자동으로 수행할 수 있는 자율 기계학습이 연구되고 있다. 본 논문에서는 고성능 자율 기계학습을 위한 인텔리전트 데이터베이스 플랫폼을 제안한다.

  • PDF

Machine Learning Technology Trends for Big Data Processing (빅데이터 활용을 위한 기계학습 기술동향)

  • Lim, S.J.;Min, O.K.
    • Electronics and Telecommunications Trends
    • /
    • v.27 no.5
    • /
    • pp.55-63
    • /
    • 2012
  • 빅데이터 시대를 맞이하여 이를 분석하여 지능형 서비스로 활용할 수 있는 기술로 인공지능 기술이 다시 관심을 받고 있다. 본고에서는 인공지능의 여러 요소 기술 중 기계학습(machine learning) 분야의 빅데이터 처리를 위한 동향을 소개한다. 현재 사용 가능한 병렬처리 기반의 기계학습, 빅데이터를 이용한 기계학습 기반으로 진행되고 있는 프로젝트, 다양한 분야에 쉽게 기계학습을 적용할 수 있는 domain adaptation 기술에 대해서 정리한다.

  • PDF

A study on data collection environment and analysis using virtual server hosting of Azure cloud platform (Azure 클라우드 플랫폼의 가상서버 호스팅을 이용한 데이터 수집환경 및 분석에 관한 연구)

  • Lee, Jaekyu;Cho, Inpyo;Lee, Sangyub
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.329-330
    • /
    • 2020
  • 본 논문에서는 Azure 클라우드 플랫폼의 가상서버 호스팅을 이용해 데이터 수집 환경을 구축하고, Azure에서 제공하는 자동화된 기계학습(Automated Machine Learning, AutoML)을 기반으로 데이터 분석 방법에 관한 연구를 수행했다. 가상 서버 호스팅 환경에 LAMP(Linux, Apache, MySQL, PHP)를 설치하여 데이터 수집환경을 구축했으며, 수집된 데이터를 Azure AutoML에 적용하여 자동화된 기계학습을 수행했다. Azure AutoML은 소모적이고 반복적인 기계학습 모델 개발을 자동화하는 프로세스로써 기계학습 솔루션 구현하는데 시간과 자원(Resource)를 절약할 수 있다. 특히, AutoML은 수집된 데이터를 분류와 회귀 및 예측하는데 있어서 학습점수(Training Score)를 기반으로 보유한 데이터에 가장 적합한 기계학습 모델의 순위를 제공한다. 이는 데이터 분석에 필요한 기계학습 모델을 개발하는데 있어서 개발 초기 단계부터 코드를 설계하지 않아도 되며, 전체 기계학습 시스템을 개발 및 구현하기 전에 모델의 구성과 시스템을 설계해볼 수 있기 때문에 매우 효율적으로 활용될 수 있다. 본 논문에서는 NPU(Neural Processing Unit) 학습에 필요한 데이터 수집 환경에 관한 연구를 수행했으며, Azure AutoML을 기반으로 데이터 분류와 회귀 등 가장 효율적인 알고리즘 선정에 관한 연구를 수행했다.

  • PDF

A Study on Machine Learning and Basic Algorithms (기계학습 및 기본 알고리즘 연구)

  • Kim, Dong-Hyun;Lee, Tae-ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.35-36
    • /
    • 2018
  • 본 논문에서는 기계학습 및 기계학습 기법 중에서도 Markov Decision Process (MDP)를 기반으로 하는 강화학습에 대해 알아보고자 한다. 강화학습은 기계학습의 일종으로 주어진 환경 안에서 의사결정자(Agent)는 현재의 상태를 인식하고 가능한 행동 집합 중에서 보상을 극대화할 수 있는 행동을 선택하는 방법이다. 일반적인 기계학습과는 달리 강화학습은 학습에 필요한 사전 지식을 요구하지 않기 때문에 불명확한 환경 속에서도 반복 학습이 가능하다. 본 연구에서는 일반적인 강화학습 및 강화학습 중에서 가장 많이 사용되고 있는 Q-learning 에 대해 간략히 설명한다.

  • PDF

Data preprocessing for efficient machine learning (효율적인 기계학습을 위한 데이터 전처리)

  • Kim, Dong-Hyun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • /
    • pp.49-50
    • /
    • 2019
  • 데이터를 기반으로 한 기계학습은 데이터의 양, 학습 모델, 그리고 데이터의 특징 등 다양한 환경에 민감한 특징을 지니고 있어, 보다 효율적인 기계학습을 위해 데이터의 전처리 과정을 필요로 한다. 데이터의 전처리 과정이란 특징 선택(Feature selection), 노이즈 데이터의 제거, 차원 감소(Demension reduction), 클러스터링(Clustering) 등 보다 효율적인 기계학습을 위한 방법이다. 따라서 본 논문에서는 다양한 환경에서 보다 효율적인 기계학습을 위한 데이터 전처리 기술의 종류 및 간단한 특징에 대해 서술한다.

  • PDF

기계학습 및 딥러닝 기술동향

  • Mun, Seong-Eun;Jang, Su-Beom;Lee, Jeong-Hyeok;Lee, Jong-Seok
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.49-56
    • /
    • 2016
  • 본 논문에서는 패턴 인식 및 회귀 문제를 풀기 위해 쓰이는 기계학습에 대한 전반적인 이론과 설계방법에 대해 알아본다. 대표적인 기계학습 방법인 신경회로망과 기저벡터머신 등에 대해 소개하고 이러한 기계학습 모델을 선택하고 구축하는 데에 있어 고려해야 하는 문제점들에 대해 이야기 한다. 그리고 특징 추출 과정이 기계학습 모델의 성능에 어떻게 영향을 미치는지, 일반적으로 특징 추출을 위해 어떤 방법들이 사용되는 지에 대해 알아본다. 또한, 최근 새로운 패러다임으로 대두되고 있는 딥러닝에 대해 소개한다. 자가인코더, 제한볼츠만기계, 컨볼루션신경회로망, 회귀신경회로망과 같이 딥러닝 기술이 적용된 대표적인 신경망 구조에 대해 설명하고 기존의 기계학습 모델과 비교하여 딥러닝이 가지고 있는 특장점을 알아본다.

Load Balancing Scheme for Machine Learning Distributed Environment (기계학습 분산 환경을 위한 부하 분산 기법)

  • Kim, Younggwan;Lee, Jusuk;Kim, Ajung;Hong, Jiman
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • As the machine learning becomes more common, development of application using machine learning is actively increasing. In addition, research on machine learning platform to support development of application is also increasing. However, despite the increasing of research on machine learning platform, research on suitable load balancing for machine learning platform is insufficient. Therefore, in this paper, we propose a load balancing scheme that can be applied to machine learning distributed environment. The proposed scheme composes distributed servers in a level hash table structure and assigns machine learning task to the server in consideration of the performance of each server. We implemented distributed servers and experimented, and compared the performance with the existing hashing scheme. Compared with the existing hashing scheme, the proposed scheme showed an average 26% speed improvement, and more than 38% reduced the number of waiting tasks to assign to the server.

  • PDF