• Title/Summary/Keyword: 기계적 합금화

Search Result 373, Processing Time 0.027 seconds

Development of High Strength Hot Dip Galvannealing Steel (고장력 열연도금 강판 개발)

  • O, Jong-Su;Yang, Won-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.191-191
    • /
    • 2013
  • 최근 차량 경량화와 승객의 안전성을 위하여 고성형/고강도강의 수요가 급격히 증가하고, 이를 위한 강종 개발로 고강도 및 고버링성 소재가 개발되고 있으며, 또한 차량의 자동차의 사용환경이 점차 가혹해지고 장수명화 됨에 따라 자동차 강판에서 방청방식의 중요성이 크게 대두되고 있어, 이를 충족시키기 위한 합금화융융아연도금 열연강판(HGA)의 사용이 증대되고 있다. 따라서 본 연구는 고강도/고버링성의 합금화용융도금열연강판 개발을 목적으로 하였으며, 합금 성분 및 PGL의 열처리 조건에 따른 기계적 물성 을 평가하였으며, SEM,OM등을 통한 미세조직 관찰 및 홀확장성 평가를 실시 하였다.

  • PDF

Elevated Temperature Compressive Properties of Al-Ti Alloys Prepared by Mechanical Alloying (기계적 합금화에 의해 제조된 AS-Ti합금의 고온압축성질)

  • 이광민
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.129-132
    • /
    • 1998
  • The elevated temperature compressive tests were carried out in order to investigate the deformation behavior and microstructural characteristics of Al-8%Ti, Al-12%Ti and Al-16%Ti (wt%) alloys, which were mechanically alloyed and consolidated by vacuum hot pressing, A13Ti intermetallic phases were formed with sizes of few hundred nanometers in the mechanically alloyed Al-Ti alloys. The compressive strength of mechanically alloyed AA-Ti alloys increased with decroasing the temperature and with increasing the strain rate. The strain rate sensitivities of Al-8%Ti, Al-12%Ti and Al-16%Ti alloys were measured 0.02,0.03, and 0.14, respectively, at 35$0^{\circ}C$.

  • PDF

Mechanical Alloying Behavior and Microstructures of Extrudate in Al-Ti-(Si) Base Alloys (A1-Ti-(Si)계 합금의 기계적 합금화 및 성형체의 미세조직)

  • 최철진
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.165-170
    • /
    • 1995
  • Alloying behavior of nanocrystalline Al-Ti-(Si) composite powders via mechanical alloying (MA) has been investigated, and the effect of Si on the microstructural changes during MA was discussed. The microstructures of both MA powders and extruded compacts were examined. In Al-Ti system, the solid solutionized nanocrystalline powders could be obtained by MA. On the contrary, fine Si particles were embedded as an elemental state in the matrix of Al-Ti-Si system because of the brittleness and the negligible solid solubility of Si in Al. After hot extrusion, $Al3Ti$ phase was finely precipitated in Al-10fSTi alloy, and Si particles were dissolved to form $(Al, Si)_3Ti$ phase in Al-10%Ti-2%Si alloy.

  • PDF

On the Properties of Nanostructured Cu-Pb Alloys Prepared by Mechanical Alloying (기계적 합금화 방법으로 제조된 Nanostructured Cu-Pb 합금의 물성 연구)

  • 김진천
    • Journal of Powder Materials
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 1996
  • Nanostructured Cu-Pb powders were synthesized by mechanical alloying process. The variation of powder characteristics with mechanical alloying time was investigated by x-ray diffraction, differential scanning calorimetry, SEM and TEM. An electrical resistivity of the hot pressed specimens was also measured by using the nanovoltmeter. It was shown that mechanical alloying for 12 hours leads to a homogenization and a grain refinement to the nanometer scale under 20 nm. The mechanically alloyed Cu-Pb alloys represented the enhanced solid solubility of 10wt% Pb in the Cu matrix. The monotectic temperature of nanostructured Cu-Pb alloy decreased from equilibrium state of 955$^{\circ}C$ to 855$^{\circ}C$ due to reduced grain size effect. The analysis of electrical resistivity showed that the hot pressed MA Cu-5wt% Pb compact existed as a solid solution.

  • PDF

The synthesis of $Nb_3Sn$ alloy powders by mechanical alloying (기계적 합금화 방법에 의한 $Nb_3Sn$합금 제조)

  • Lee, Sung-Man
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.464-467
    • /
    • 1996
  • The microstructural evolution during mechanical alloying of Nb and Sn powders, of average composition Nb3Sn, has been investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Observations by SEM showed a progressive change of milling time. From the XRD studies, the structural development with milling time depends on the ball size for a given powder/ball ratio. Using a larger ball of 9.5mm diameter, the elemental powders initially alloy mechanically to form an A15 structure phase, and then amorphised with continued milling. However, in case of milling with a smaller ball of 3.968mm diameter, an amorphous phase is first formed. These results can be understood by considering the dependence of the milling energy on the ball size. The homogeneous stoichiometric $Nb_3Sn$ phase could be easily obtained by heat treatment of a supersaturated solid solution produced by MA. Heat treatment of an amorphous phase formed by MA resulted in the mixture of the $Nb_3Sn$ and $Nb_6Sn_5$ phases.

  • PDF

Amorphization Process of Cr-N Alloy System by Mechanical Alloying (기계적 합금화에 의한 Cr-N계 합금의 비정질화 과정)

  • 이충효;이성희;이상진;권영순
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.288-293
    • /
    • 2003
  • Mechanical alloying (MA) by high energy ball mill of Pure chromium Powders was carried out under the nitrogen gas atmosphere. Cr-N amorphous alloy powders have been produced through the solid-gas reaction subjected to MA. The atomic structure during amorphization process was observed by X-ray and neutron diffractions. An advantage of the neutron diffraction technique allows us to observe the local atomic structure surrounding a nitrogen atom. The coordination number of metal atoms around a N atom turns out to be 5.5 atoms. This implies that a nitrogen atom is located at both of centers of the tetrahedron and octahedron formed by metal atoms to stabilize an amorphous Cr-N structure. Also, we have revealed that a Cr-N amorphous alloy may produced from a mixture of pure Cr and Cr nitrides powders by solid-solid reaction during mechanical alloying.

A Study on Stress Corrosion of Al-8ti-1B Alloys by Mechanical Alloying (기계적 합금화한 Al-8Ti-1B 합금의 응력부식에 관한 연구)

  • 김기주;강성군;백영남
    • Journal of Surface Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.215-222
    • /
    • 1994
  • The role dispersoids has been studied in a number of researches as a key point for the high strength application of dispersion strengthened aluminum alloy. The mechanical alloying(MA) process with high mechanical properties of dispersion strengthened MA Al-8Ti-1B alloys were invested in order to evaluate their stress corrosion cracking(SCC) application. SCC properties of the mechanically alloyed Al-8Ti-1B were studied using slow strain rate test(SSRT). In this study Al-8Ti-1B alloy were more susceptible to SCC in solutions of pH=2.01 and 13.2 than pH=6.81 solution. In this study Al-8Ti-1B alloys by MA had more SCC resistance than Al-8Ti alloys or Al 7075-T73 alloys. So Al-8Ti-1B alloys by MA had more resistance in SSRT SCC susceptinility test than any other above alloying metals.

  • PDF

방전 플라즈마 소결 공법을 이용한 FSW-Tool 용 $WC-5Mo_2C-5Co$ 소결체 제조와 기계적 특성 평가

  • Yun, Hui-Jun;Park, Hyeon-Guk;Lee, Seung-Min;Bang, Han-Seo;Bang, Hui-Seon;O, Ik-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • 초경합금은 경도가 높은 재료를 말하며 일반적으로는 탄화텅스텐(WC)계 재료를 말한다. 국내 현재 초경합금 동향은 반도체 산업, 내마모성 공구, 절삭공구, 금형 등 많은 분야에 사용되어지고 있다. 또한 최근 들어 FSW (Friction Stir Welding, FSW)기술이 발전함에 따라 접합기술개발이 다양화되면서 FSW Tool의 고성능의 초경 재료가 요구되어지며 장수명의 Tool개발이 되어야 한다. 국내에서는 초경 합금 재료로 사용되어지고 있는 텅스텐 카바이드(WC)와 코발트(Co)를 이용하여 많은 연구가 진행되었다. 본 실험에서는 텅스텐 카바이드와 코발트 및 몰르브덴 카바이드를 혼합하여 소결체를 제조하였다. 실험에 사용된 텅스텐 카바이드는 높은 경도를 가지고 강한 취성을 나타내며, 소결에 어려운 단점이 있다. 이러한 단점을 코발트와 몰리브덴 카바이드를 첨가하여 소결온도를 낮춰주는 역할과 액상 소결시 텅스텐카바이드 입자사이에 침투하여 액상소결에 의한 치밀화가 가능하게 해주며 인성이 향상되어 고인성 재료를 만들 수 있었다. 본 실험에서는 합성과 치밀화가 동시에 진행되는 SPS (Spark Plasma Sintering:SPS) 장비를 이용하여 실험을 진행하였다. 이 방법은 방전플라즈마 소결 공법으로, 기존의 연소법과 열간 가압기술(Hot-press, HIP)을 결합한 방식으로 단 시간, 단일공정으로 치밀한 소결체를 얻을 수 있는 장점이 있다. 본 연구에서는 $WC-5Mo_2C$-5wt%Co 소결체 제조를 위해 원소 분말을 Horizontal ball milling 혼합하였다. 균일하게 혼합된 분말을 흑연다이에 충진하여 펄스전류와 기계적 압력을 동시에 가하여 $WC-5Mo_2C-5Co$ 복합재료를 제조하고 소결체의 밀도, 순도, 상변태, 미세조직 등을 분석 및 평가하였다. SPS공정 조건은 고진공하에서 $1,200^{\circ}C$-60MPa, 펄스비 12:1 조건으로 수행하였으며, 얻어진 $WC-5Mo_2C-5Co$ 소결체의 상대 밀도는 98%이상 이였다. 또한, 결정립 크기는 약 400 nm였으며, 경도는 $2,453kg/mm^2$를 나타내었다.

  • PDF

The Evaluation of Hydrogenation Properties on $MgH_x-Fe_2O_3$ Composite by Mechanical Alloying (기계적 합금화법으로 제조된 $MgH_x-Fe_2O_3$ 복합재료의 수소화 특성 평가)

  • Seok, Song;Cho, Kyoung-Won;Hong, Hae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.26-31
    • /
    • 2007
  • Hydrogen has a high potential to be a renewable substitute for fossil fuels, because of its high gravimetric energy density and environment friendliness. In particular, Magnesium have attracted much interest since their hydrogen capacity exceeds that of known metal hydrides. One of the approaches to improve the kinetic is addition of metal oxide. In this paper, the effect of $Fe_2O_3$ concentration on the kinetics of Mg hydrogen absorption reaction was investigated. $MgH_x-Fe_2O_3$ composites have been synthesized by hydrogen induced mechanical alloying. The powder synthesized was characterized by XRD, SEM and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. Absorption and desorption kinetics of Mg catalyzed with 5,10 mass% $Fe_2O_3$ are determined at 423, 473, 523, 573, 623K.

Evaluation of Hydrogenation Behavior of MgHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 MgHx-Graphene 복합재료의 수소화 거동 특성)

  • Lee, Soo-Sun;Lee, Na-Ri;Kim, Kyeong-Il;Hong, Tae-Whan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.780-786
    • /
    • 2011
  • Mg hydride had high hydrogen capacity (7.6%), lightweight and low cost materials and it was promising hydrogen storage material at high temperature. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. one of the approaches to improve the kinetic is $MgH_x$ intermixed with carbon. And it shows that carbon and carbon allotropes have a beneficial effect on hydrogen sorption in Mg. The graphene is a kind of carbon allotropes which is easily desorbed reaction at low temperatures because its reaction is exothermic. In this work, the effect of graphene concentration on the kinetics of Mg hydrogen absorption reaction was investigated. The $MgH_x$-Graphene composites has been prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD and simultaneous TG, DSC analysis. The hydrogenation behaviors were evaluated by using a sievert's type automatic PCT apparatus. In this research, results of kinetic profiles exhibit hydrogen absorption rate of $MgH_x$-5wt.% and 10wt.% graphene composite, as 1.25wt.%/ms, 10.33wt.%/ms against 0.88wt.%/ms for $MgH_x$ alone at 473K.