소프트웨어 분류 기법은 저작권 침해 탐지, 악성코드의 분류, 소프트웨어 보관소의 소프트웨어 자동분류 등에 활용할 수 있으며, 불법 소프트웨어의 전송을 차단하기 위한 소프트웨어 필터링 시스템에도 활용할 수 있다. 소프트웨어 필터링 시스템에서 유사도 측정을 통해 불법 소프트웨어를 식별할 경우, 소프트웨어 분류를 활용하여 탐색 범위를 축소하면 평균 비교 횟수를 줄일 수 있다. 본 논문은 API 호출 정보와 기계학습을 통한 윈도우즈 실행파일 분류를 연구한다. 다양한 API 호출 정보 정제 방식과 기계학습 알고리즘을 적용하여 실행파일 분류 성능을 평가한다. 실험 결과, PolyKernel을 사용한 SVM (Support Vector Machine)이 가장 높은 성공률을 보였다. API 호출 정보는 바이너리 실행파일에서 추출할 수 있는 정보이며, 기계학습을 적용하여 변조 프로그램을 식별하고 실행파일의 빠른 분류가 가능하다. 그러므로 API 호출 정보와 기계학습에 기반한 소프트웨어 분류는 소프트웨어 필터링 시스템에 활용하기에 적당하다.
Permanent Magnet Synchronous Motor(PMSM)는 볼스크류, 기어 및 타이밍 벨트를 이용하여 NC, 가공기, 로봇 및 공장 자동화를 포함하여 산업 시스템 전반에 널리 사용되고 있다. 이러한 PMSM과 부하의 결합으로 구성된 시스템은 동력의 전달에 있어서, 고유의 공진 주파수를 가지며 공진 주파수 대역에서의 기계계의 응답 특성은 매우 불안정하고, 기계 시스템의 손상을 일으키게 된다. 본 논문에서는 PMSM을 이용한 직선 운동 시스템에서 기계적인 결합에 의한 기구부의 진동을 억제하기 위하여 진동 주파수를 자동으로 검출하여, 진동의 원인이 되는 토크 지령 신호를 억제하는 적응형 노치 필터를 포함하는 속도 제어 시스템을 제안한다. 하지만, 기계적인 진동 주파수와 주파수의 대역은 전동기에 결합된 결합 기구 및 부하에 따라서 변동하는 특성을 가지고 기계적인 진동의 크기도 진동원이 되는 신호에 따라 변동하므로, 이를 적응형 노치 필터부에서 이를 진단하여 진동 주파수를 자동으로 억제함으로써 안정적인 운전이 가능하도록 설계된다. 본 논문에서 제안된 기계적인 진동을 억제하기 위한 적응형 노치 필터의 성능은 시뮬레이션 및 실험을 통하여 검증하였다.
나노물질은 작은 크기와 공기필터 응용장치의 초고표면적과 함께 기계적, 물리적, 화학적 특성을 가진다. 전기방사는 나노섬유 중합체를 제조하는데 있어 가장 효율적인 기술로 인식되어왔다. 최적의 제조 조건을 찾기 위해, 여러 전기방사 공정 파라미터의 효과에 따른 폴리아크릴로니트릴(PAN) 나노섬유의 직경, 성향 및 분포를 분석했다. 층간파괴 인성 향상시키고 히트롤러로 적층된 부직포의 형태로 박리를 억제하고, PAN 나노섬유 공기필터의 여과효율과 압력강하 성능을 실험적으로 평가하였다.
인터넷의 급속한 성장으로 데이터의 송수신의 편리성과 비용이 들지 않는다는 장점 때문에 매일 수백만 건의 무차별적인 광고성 스팸 문자와 메일이 발송되고 있다. 아직은 스팸 단어나 스팸 번호를 차단하는 방법을 주로 사용하지만, 기계 학습이 떠오름에 따라 스팸을 필터링하는 방법에 대해 다양한 방식으로 활발히 연구되고 있다. 그러나 스팸에서만 등장하는 단어나 패턴은 스팸 필터링 시스템에 의해 걸러지지 않기 위해 지속적으로 변화하고 있기 때문에, 기존 기계 학습 메커니즘으로는 새로운 단어와 패턴을 감지, 적응할 수 없다. 최근 이러한 기존 기계 학습의 한계점을 극복하기 위해 기존의 지식을 활용하여 새로운 지식을 지속적으로 학습하도록 하는 Lifelong Learning(이하 LL)의 개념이 대두되었다. 본 논문에서는 문서 분류에 가장 많이 사용되는 나이브 베이즈와 Lifelong Machine Learning(이하 LLML)의 앙상블 기법을 이용한 스팸 메시지 필터링 방법을 제안한다. 우리는 기존 스팸 필터링 시스템에 가장 많이 사용되는 나이브 베이즈와, LLML 모델 중 ELLA를 적용하여 LL의 성능을 검증한다.
기계적인 요소와 자연적인 요소를 연계한 마을하수처리 실증플랜트의 가동후 공정별 수질분석 및 자료수집개시: 2008년 9월20일에 착수하여 1주에 1회 간격으로 현재까지 공정별 26회의 현장방문과 수질 조사를 실시하였다. 질산화 전환율은 70~80%로 훌륭하나 탈질은 탄소원 부족으로 저조하였다. 그 이유는 유기물질은 전처리 단계인 바이오필터에서 대부분 제거되었기 때문으로 참여기업과 협의하여 바이오 필터 체류시간 감축방안 수립하여 운영한 결과 탈질효율을 향상시킬 수 있었다. 유기물질 제거효율은 상시적으로 90% 이상의 제거효율 달성할 수 있었다.
기계설비의 진동신호와 음향신호에서 결함신호를 검출하기 위해 본 논문에서는 ALE와 트리구조 필터뱅크를 이용 진동분석 시스템을 설계 구현하였다. ALE는 신호를 전처리함으로서 진동신호의 주기성분을 제거하여 결함신호검출을 용이하게 하며 트리구조 필터뱅크는 비정제적 결함신호를 전 대역에서 동일한 분해도로 분해한다. 설계된 진동분석 시스템은 모의실험과 DSP상의 구현을 통해 그 성능이 평가하였다.
최신 기계번역 연구 동향을 살펴보면 대용량의 단일말뭉치를 통해 모델의 사전학습을 거친 후 병렬 말뭉치로 미세조정을 진행한다. 많은 연구에서 사전학습 단계에 이용되는 데이터의 양을 늘리는 추세이나, 기계번역 성능 향상을 위해 반드시 데이터의 양을 늘려야 한다고는 보기 어렵다. 본 연구에서는 병렬 말뭉치 필터링을 활용한 mBART 모델 기반의 실험을 통해, 더 적은 양의 데이터라도 고품질의 데이터라면 더 좋은 기계번역 성능을 낼 수 있음을 보인다. 실험결과 병렬 말뭉치 필터링을 거친 사전학습모델이 그렇지 않은 모델보다 더 좋은 성능을 보였다. 본 실험결과를 통해 데이터의 양보다 데이터의 질을 고려하는 것이 중요함을 보이고, 해당 프로세스를 통해 추후 말뭉치 구축에 있어 하나의 가이드라인으로 활용될 수 있음을 보였다.
추천 시스템은 전자 상거래 시에 고객들의 상품 선택의 편의를 제공하므로 반드시 구비되어야 할 기능이다. 협력 필터링은 다른 사용자들이 선호하였던 상품이나 현 사용자가 과거 선호하였던 상품들을 위주로 추천 리스트를 제공하는 기법으로서, 가장 널리 활용되는 대표적 기법이다. 최근 딥러닝 인공지능 기술을 활용하여 추천 시스템의 성능 향상을 달성하는 연구가 활발히 진행되고 있다. 본 연구에서는 사용자가 부여한 평가등급만을 이용하여 딥러닝 기술의 일종인 제한 볼츠만 기계 학습을 통해 협력 필터링 기반의 추천 시스템을 개발한다. 또한 학습의 효율성과 성능을 위하여 학습 파라미터 변경 알고리즘을 제시한다. 제안 시스템의 성능 평가를 위하여 실험 분석을 통해 기존의 다양한 전통적 협력 필터링 기법들과 비교 분석을 실시하였으며, 제안 알고리즘은 기본적인 제한 볼츠만 기계 모델보다 우수한 성능을 가져오는 것으로 확인되었다.
항공기나 발전용 가스터빈(gas turbine) 및 대용량 압축기(compressor) 등과 같이 흡입공기의 유량이 매우 클 경우, 유입되는 공기 내부에 함유된 입자상 오염물질은 터빈의 기계적 성능에 큰 장애를 일으킬 수 있다(Klink and Schroth, 1996, Schroth, 1993). 이러한 입자상 오염물질을 효과적으로 제어하기 위해서는 처리기체의 유입구 부분에 대형 공기 정화용 여과시스템이 요구되며, 일반적으로 카트리지형 에어 필터(cartridge air filter)나 포켓형(pocket), 카세트형(cassette) 에어 필터가 적용 현장의 조건에 따라 사용된다. (중략)
소각로, 각종 산업시설 및 IGCC, PBFC등의 고온 고압 발전에서 배출되는 고온연소가스 중에 포함된 먼지를 제거할 목적으로 세라믹 고온가스 필터가 전세계적으로 개발중에 있다. (1,2) 성능이 우수한 세라믹 가스여과체의 필수조건으로써 \circled1높은 포집효율, 낮은 통기성, \circled2높은 기계적 강도 및 내부식성 등을 들 수 있다. 현재 국내.외에서 상용화되거나, 연구, 개발중인 세라믹 가스필터 재료의 조성으로써, \circled1단일 산화물계, \circled2산화물-산화물 복합계, \circled3산화물-비산화물계, \circled4비산화물계 등으로 분류할수 있다. (표1 참조)
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.