• Title/Summary/Keyword: 기계적 강성

Search Result 422, Processing Time 0.027 seconds

Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function (주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석)

  • 강성구;지태한;유원희;박영필
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

A Study on Stress Corrosion of Al-8ti-1B Alloys by Mechanical Alloying (기계적 합금화한 Al-8Ti-1B 합금의 응력부식에 관한 연구)

  • 김기주;강성군;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.215-222
    • /
    • 1994
  • The role dispersoids has been studied in a number of researches as a key point for the high strength application of dispersion strengthened aluminum alloy. The mechanical alloying(MA) process with high mechanical properties of dispersion strengthened MA Al-8Ti-1B alloys were invested in order to evaluate their stress corrosion cracking(SCC) application. SCC properties of the mechanically alloyed Al-8Ti-1B were studied using slow strain rate test(SSRT). In this study Al-8Ti-1B alloy were more susceptible to SCC in solutions of pH=2.01 and 13.2 than pH=6.81 solution. In this study Al-8Ti-1B alloys by MA had more SCC resistance than Al-8Ti alloys or Al 7075-T73 alloys. So Al-8Ti-1B alloys by MA had more resistance in SSRT SCC susceptinility test than any other above alloying metals.

  • PDF

A study on the effect of plastic deformation and heat treatment on mechanical properties (소성가공 및 열처리가 기계적 성질에 미치는 영향에 관한 연구)

  • Je J. S.;Kim J. M.;Kang S. S.;Lee K. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.283-286
    • /
    • 2005
  • Because CV Joint which is one of the component of automobile power train system communicates high power and performs power steering function, it requires high qualities such as high strength, high toughness and high fatigue resistance. This component undergoes a series of production processes such as forging, machining and heat treatment and required properties for this component depends on plastic deformation and heat treatment heavily. Therefore in this study, in order to these effects on mechanical properties due to plastic deformation and heat treatment we performed heat treatment following plastic deformation and then tensile test.

  • PDF

Shimmy Model and Experiment of Steering System of a Passenger Car (승용차 조향계 Shimmy 모델과 실험)

  • 박철희;김중희;김철수;송상기;오진우
    • Journal of the KSME
    • /
    • v.33 no.10
    • /
    • pp.884-891
    • /
    • 1993
  • 최근 승용차의 설계는 일반적으로 고속화, 경량화 추세에 있다. 이에 따라 심각하게 대두되고 있는 것이 진동문제로서, 그중에서도 조향계(steering system)의 진동은 보다 쾌적한 승차감 내지 조정성능을 저해하고 운전자에게 불쾌감을 초래하는 진동으로서 이에 대한 개선책이 요구되어 왔다. 따라서 이러한 조향계의 진동인 쉬미(shimmy)현상을 저감시키기 위해서는 다음과 같은 방법등이 있다. 1) 가진원이 되는 타이어의 불균형 질량을 줄이거나 타이어의 정밀도를 증가시키는 방법. 2) 진동전달 경고상의 감쇠특성과 조향계의 강성을 변화시켜 전달률을 줄이는 방법. 3) 차체의 동특성 변화를 통하여 고유진동수를 변화시켜 공진영역을 옮기는 방법. 이 글에서는 쉬미에 큰 영향을 줄 것으로 생각되어지는 여러 중요한 인자들을 단계적으로 포함 시켜가면서 이론해석 결과와 실험결과를 비교 . 검토 . 보완해갈 것이며, 그 결과 이론적으로 쉬미현상을 예측할 수 있는 방안을 제시하고자 한다.

  • PDF

A Study on the Blankholding Force in Deep Drawing Process (디프 드로잉 가공시 블랭크 홀더력에 관한 연구)

  • 이종국;강명순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.886-900
    • /
    • 1989
  • The purpose of this paper is to obtain the effect of blankholding force in deep drawing process. Flange deformation is analysed by theoretical approach in order to apply the optimum blankholding force to the blank. As the result, the upper and lower blankholding force is determined in terms of variables in deep drawing process. Experiment are carried out with the high stiffness spring-type blankholder system. Theoretical upper blankholding force are relatively good agreement with experimental result and the range of initial blankholding forces for various materials tested are found by experiment.

Flow Analysis and Evaluation of Injection-Molded Front Panel (백라이트 패널(back light panel)의 유동해석 및 평가)

  • 강성남;허용정
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.11a
    • /
    • pp.144-146
    • /
    • 2001
  • The synthesis of injection-molded parts has been done empirically, since it requires profound knowledge about injection molding which is not available to designers through current CAD systems. Appropriate U3 programs for mold design analysis to an existing geometric modeler is used to provide designers, at the initial stage, with comprehensive process knowledge for synthesis, performance analysis and feature-based geometric modeling.

Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams (매입형 합성보의 전단합성거동에 대한 비교분석)

  • Shin, Hyun Seop;Heo, Byung Wook;Bae, Kyu Woong;Kim, Keung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • In this study, a bending test with three encased composite beams were carried out and analyzed using FEM in order to find how chemical adhesion, interface interlock, friction and composite action by shear studs contribute to stiffness, strength and composite action in the interface of encased compo site beams. The test and results of the FEM analysis showed that the difference in the ultimate moment capacity of the composite beams with and without studs is under 10%. The reason is that the effect of chemical adhesion, interface interlock, and friction in the interface on the composite action is so high that the encased beams have a moment capacity above some defined magnitude. Also, the increment of moment capacity up to plastic moment is not large and the increase of linearly proportioned.

Study on Fastened Properties by Applied to CFRP Laminates of Subminiature Screw (초소형나사의 CFRP 적층판 적용에 따른 체결특성에 관한 연구)

  • Choi, Byung Hui;Kim, Ho Joong;Kim, Ji Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1239-1243
    • /
    • 2014
  • This paper presents the application of carbon-fiber-reinforced polymer (CFRP) for the damage absorption and optimal design of portable smart devices to close in life. CFRP specimens are subjected to a tensile test to estimate their mechanical properties in terms of the stacking angles. Further, the screw reverse torque and screw torque at each stacking angle are determined using a torque tester after tapping holes on the CFRP specimens. Two experiments are performed for comparing their results in order to determine optimal conditions. In the tensile test, a woven specimen is found to have the highest strength and stiffness. In the case of the woven specimen, no difference is observed even when it is applied to prevent loosening of the coating. And average result value was excellent.

Design and Fabrication of a Dual Polarized Load-bearing Microstrip Antenna (이중편파 하중 지지형 마이크로스트립 안테나 설계 및 제작)

  • 이라미;이정수;박위상;박현철;황운봉
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.125-135
    • /
    • 2001
  • A 8$\times$4 microstrip antenna array is designed at 5.3 GHz and its characteristics are investigated with respect to the application in dual polarized synthetic aperture radars. The design is focused on the achievement of a wide bandwidth, a high polarization purity, a low loss, a good isolation and some mechanical requirements suitable for the application. The antenna is fed by a -3 dB tapered feed network, and is composed of dual polarized SSFIP (Strip-Slot-Foam-Inverted Patch) elements with honeycomb and shielding plane. Simulation results for the antenna array are presented and compared with measurements. It is observed that the antenna shows a bandwidth of 80 MHz, a polarization isolation better than 20 dB, an isolation of 40 dB, and good mechanical characteristics.

  • PDF

Flexural characteristic changes of fiber reinforced composite $(Fibrekor^{(R)})$ according to water absorption (물 흡수에 따른 fiber reinforced composite $(Fibrekor^{(R)})$의 굽힘 특성 변화)

  • Kim, Sueck-Bum;Kim, Min-Jeong;Kim, Kyung-Ho;Choy, Kwangchul
    • The korean journal of orthodontics
    • /
    • v.35 no.5 s.112
    • /
    • pp.361-370
    • /
    • 2005
  • Fiber reinforced composite (FRC) has been widely used in operative and prosthetic fields of dentistry and its use is expanding into the orthodontic field. The purpose of this study was to examine the changes of flexural properties of FRC reinforced with silica glass fiber (FibreKor, Jeneric/Pentron Inc.. Wallingford. U.S.A.) according to the duration of water absorption. Specimens were grouped according to their shape as round and rectangular cross sections, and were immersed in distilled water at room temperature $(23^{\circ}C)$ for 0 hour 1 hour 1 week. 15 days, 1 mouth and 3 mouths. The number of specimens was 5 for each duration and bending test was done using a torque tester The flexural stiffness after 24 hour water immersion was reduced to 59% for round specimens and 25% for rectangular specimens and after 3 mouths of water immersion it was reduced to 29% and 19% stiffness of the 0 hour-specimen respectively Yield flexural moment after 24 hour water immersion was reduced to 45%for round specimens and 76% for rectangular specimens and after 3 months of water immersion it was reduced to 29% and 60% stiffness of the 0 hour-specimen respectively Ultimate flexural moment after 24 hour water immersion was reduced to 35% for round specimens and 76% for rectangular specimens and after 3 mouths of water immersion it was reduced to 25% and 37% stiffness of 0 hour-specimen respectively. Those results suggested that the flexural stiffness of FibreKor decreased greatly after initial water immersion. Consequently, further research for the maintenance of strength against water will be necessary