• Title/Summary/Keyword: 기계인간

Search Result 58,771, Processing Time 0.086 seconds

Roles and Preparation for the Future Nurse-Educators (미래 간호교육자의 역할과 이를 위한 준비)

  • Kim Susie
    • The Korean Nurse
    • /
    • v.20 no.4 s.112
    • /
    • pp.39-49
    • /
    • 1981
  • 기존 간호 영역 내 간호는 질적으로, 양적으로 급격히 팽창 확대되어 가고 있다. 많은 나라에서 건강관리체계가 부적절하게 분배되어 있으며 따라서 많은 사람들이 적절한 건강관리를 제공받지 못하고 있어 수준 높은 양질의 건강관리를 전체적으로 확대시키는 것이 시급하다. 혹 건강관리의 혜택을 받는다고 해도 이들 역시 보다 더 양질의 인간적인 간호를 요하고 있는 실정이다. 간호는 또한 간호영역 자체 내에서도 급격히 확대되어가고 있다. 예를들면, 미국같은 선진국가의 건강간호사(Nurse practitioner)는 간호전문직의 새로운 직종으로 건강관리체계에서 독자적인 실무자로 그 두각을 나타내고 있다. 의사의 심한 부족난으로 고심하는 발전도상에 있는 나라들에서는 간호원들에게 전통적인 간호기능 뿐 아니라 건강관리체계에서 보다 많은 역할을 수행하도록 기대하며 일선지방의 건강센터(Health center) 직종에 많은 간호원을 투입하고 있다. 가령 우리 한국정부에서 최근에 시도한 무의촌지역에서 졸업간호원들이 건강관리를 제공할 수 있도록 한 법적 조치는 이러한 구체적인 예라고 할 수 있다. 기존 간호영역내외의 이런 급격한 변화는 Melvin Toffler가 말한 대로 ''미래의 충격''을 초래하게 되었다. 따라서 이러한 역동적인 변화는 간호전문직에 대하여 몇가지 질문을 던져준다. 첫째, 미래사회에서 간호영역의 특성은 무엇인가? 둘째, 이러한 새로운 영역에서 요구되는 간호원을 길러내기 위해 간호교육자는 어떤 역할을 수행해야 하는가? 셋째 내일의 간호원을 양성하는 간호교육자를 준비시키기 위한 실질적이면서도 현실적인 전략은 무엇인가 등이다. 1. 미래사회에서 간호영역의 특성은 무엇인가? 미래의 간호원은 다음에 열거하는 여러가지 요인으로 인하여 지금까지의 것과는 판이한 환경에서 일하게 될 것이다. 1) 건강관리를 제공하는 과정에서 컴퓨터화되고 자동화된 기계 및 기구 등 새로운 기술을 많이 사용할 것이다. 2) 1차건강관리가 대부분 간호원에 의해 제공될 것이다. 3) 내일의 건강관리는 소비자 주축의 것이 될 것이다. 4) 간호영역내에 많은 새로운 전문분야들이 생길 것이다. 5) 미래의 건강관리체계는 사회적인 변화와 이의 요구에 더 민감한 반응을 하게 될 것이다. 6) 건강관리체계의 강조점이 의료진료에서 건강관리로 바뀔 것이다. 7) 건강관리체계에서의 간호원의 역할은 의료적인 진단과 치료계획의 기능에서 크게 탈피하여 병원내외에서 보다 더 독특한 실무형태로 발전될 것이다. 이러한 변화와 더불어 미래 간호영역에서 보다 효과적인 간호를 수행하기 위해 미래 간호원들은 지금까지의 간호원보다 더 광범위하고 깊은 교육과 훈련을 받아야 한다. 보다 발전된 기술환경에서 전인적인 접근을 하기위해 신체과학이나 의학뿐 아니라 행동과학 $\cdot$ 경영과학 등에 이르기까지 다양한 훈련을 받아야 할 필요가 있다. 또한 행동양상면에서 전문직인 답게 보다 진취적이고 표현적이며 자동적이고 응용과학적인 역할을 수행하도록 훈련을 받아야 한다. 그리하여 간호원은 효과적인 의사결정자$\cdot$문제해결자$\cdot$능숙한 실무자일 뿐 아니라 소비자의 건강요구를 예리하게 관찰하고 이 요구에 효과적인 존재를 발전시켜 나가는 연구자가 되어야 한다. 2. 미래의 간호교육자는 어떤 역할을 수행해야 하는가? 간호교육은 전문직으로서의 실무를 제공하기 위한 기초석이다. 이는 간호교육자야말로 미래사회에서 국민의 건강요구를 충족시키기는 능력있는 간호원을 공급하는 일에 전무해야 함을 시사해준다. 그러면 이러한 일을 달성하기 위해 간호교육자는 무엇을 해야 하는가? 우선 간호교육자는 두가지 측면에서 이 일을 수정해야 된다고 본다. 그 하나는 간호교육기관에서의 측면이고 다른 하나는 간호교육자 개인적인 측면엣서이다. 우선 간호교육기관에서 간호교육자는 1) 미래사회에서 요구되는 간호원을 교육시키기 위한 프로그램을 제공해야 한다. 2) 효과적인 교과과정의 발전과 수정보완을 계속적으로 진행시켜야 한다. 3) 잘된 교과과정에 따라 적절한 훈련을 철저히 시켜야 한다. 4) 간호교육자 자신이 미래의 예측된 현상을 오늘의 교육과정에 포함시킬 수 있는 자신감과 창의력을 가지고 모델이 되어야 한다. 5) 연구 및 학생들의 학습에 영향을 미치는 중요한 의사결정에 학생들을 참여시키도록 해야한다. 간호교육자 개인적인 측면에서는 교육자 자신들이 능력있고 신빙성있으며 간호의 이론$\cdot$실무$\cdot$연구면에 걸친 권위와 자동성$\cdot$독창성, 그리고 인간을 진정으로 이해하려는 자질을 갖추도록 계속 노력해야 한다. 3. 미래의 간호원을 양성하는 능력있는 간호교육자를 준비시키기 위한 실질적이면서도 현실적인 전략은 무엇인가? 내일의 도전을 충족시킬 수 있는 능력있는 간호교육자를 준비시키기 위한 실질적이고 현실적인 전략을 논함에 있어 우리나라의 실정을 참조하겠다. 전문직 간호교육자를 준비하는데 세가지 방법을 통해 할 수 있다고 생각한다. 첫째는 간호원 훈련수준을 전문직 실무를 수행할 수 있는 단계로 면허를 높이는 것이고, 둘째는 훈련수준을 더 향상시키기 위하여 학사 및 석사간호교육과정을 발전시키고 확대하는 것이며, 셋째는 현존하는 간호교육 프로그램의 질을 높이는 것이다. 첫째와 둘째방법은 정부의 관할이 직접 개입되는 방법이기 때문에 여기서는 생략하고 현존하는 교과과정을 발전시키고 그 질을 향상시키는 것에 대해서만 언급하고자 한다. 미래의 여러가지 도전에 부응할 수 있는 교육자를 준비시키는 교육과정의 발전을 두가지 면에서 추진시킬 수 있다고 본다. 첫째는 국제간의 교류를 통하여 idea 및 경험을 나눔으로서 교육과정의 질을 높일 수 있다. 서로 다른 나라의 간호교육자들이 정기적으로 모여 생각과 경험을 교환하고 연구하므로서 보다 체계적이고 효과적인 발전체인(chain)이 형성되는 것이다. ICN같은 국제적인 조직에 의해 이러한 모임을 시도하는 것인 가치있는 기회라고 생각한다. 국가간 또는 국제적인 간호교육자 훈련을 위한 교육과정의 교환은 한 나라안에서 그 idea를 확산시키는데 효과적인 영향을 미칠 수 있다. 충분한 간호교육전문가를 갖춘 간호교육기관이 새로운 교육과정을 개발하여 그렇지 못한 기관과의 연차적인 conference를 가지므로 확산시킬 수도 있으며 이런 방법은 경제적인 면에서도 효과적일 뿐만 아니라 그 나라 그 문화상황에 적합한 교과과정 개발에도 효과적일 수 있다. 간호교육자를 준비시키는 둘째전략은 현존간호교육자들이 간호이론과 실무$\cdot$연구를 통합하고 발전시키는데 있어서 당면하는 여러가지 요인-전인적인 간호에 적절한 과목을 이수하지 못하고 임상실무경험의 부족등-을 보충하는 방법이다. 이런 실제적인 문제를 잠정적으로 해결하기 위하여 1) 몇몇 대학에서 방학중에 계속교육 프로그램을 개발하여 현직 간호교육자들에게 필요하고 적절한 과목을 이수하도록 한다. 따라서 임상실무교육도 이때 실시할 수 있다. 2) 대학원과정 간호교육프로그램의 입학자의 자격에 2$\~$3년의 실무경험을 포함시키도록 한다. 결론적으로 교수와 학생간의 진정한 동반자관계는 자격을 구비한 능력있는 교수의 실천적인 모델을 통하여서 가능하게 이루어 질수 있다고 믿는 바이다.

  • PDF

The Benefit of KT-2000 Knee Ligament Arthrometer in Diagnosis of Anterior Cruciate Ligament Injury (슬관절 전방 십자 인대 파열의 진단에 있어서 KT-2000 기기의 유용성)

  • Park, Jai-Hyung;Kim, Hyoung-Soo;Jung, Kwang-Gyu;Yoo, Jeong-Hyun
    • Journal of the Korean Arthroscopy Society
    • /
    • v.8 no.2
    • /
    • pp.82-88
    • /
    • 2004
  • Purpose: In this study, we intended to ascertain the benefit of KT-2000 Knee arthrometer(KT-2000) in the diagnosis of ACL(Anterior cruciate ligament) injury by comparing the anterior displacement of normal knee with that of ACL deficient knee. Materials and Methods: We designated two examiners to measure the anterior displacement of the knee joint of 30 healthy individuals, using KT-2000, at 30$^{\circ}$ flexion setting of muscle full relaxation, contraction, 25$^{\circ}$ internal rotation and 25$^{\circ}$ external rotation and analyzed these results according to the variables and measured the preoperative anterior displacement of the ACL injured knee in the 30 patients who have gone through an arthroscopic ACL reconstruction later. Results: The results of examiner 1 are 6.5${\pm}$1.5 mm, 2.5${\pm}$0.9 mm, 4.8${\pm}$1.2 mm, 6.4${\pm}$1.3 mm in right knee and 5.6${\pm}$1.3 mm, 2.1${\pm}$0.8 mm, 4.5${\pm}$1.2 mm, 5.2${\pm}$1.3 mm in left knee, in order of muscle full relaxation, contraction, 25$^{\circ}$ internal rotation and 25$^{\circ}$ external rotation. The results of examiner 2 are 6.9${\pm}$1.2mm, 2.9${\pm}$1.1mm, 5.6${\pm}$1.6mm, 6.9${\pm}$1.5mm in right, 5.5${\pm}$1.7 mm,1.9${\pm}$0.9 mm, 5.1${\pm}$1.9 mm, 5.7${\pm}$1.6 mm in left knee, The side to side difference of examiner 1 in the setting of muscle relaxation is 0.9${\pm}$1.0 mm. The anterior displaement of ACL injured knee is average 11${\pm}$2.93 mm and difference of average 6.5${\pm}$2.31 mm form that of normal. In comparison between the right and left knees of healthy individuals, the both results of two examiners showed the statistical difference in the setting of muscle full relaxation but, the results showed the side to side difference below 2 mm in 25case(83%), 21case(70%) respectively and above 3 mm in just 1 case. In the comparison between the normal and ACL injured knees, the results show the statistical difference of the side to side difference in the setting of muscle relaxation(p<0.05). Conclusion: The KT-2000 result is affected by relaxation of muscles around knee, flexion angle of knee joint, rotation of tibia, the strength of displacing force, time of the test and physical factors as height and weight. However, the Accuracy of diagnosis of ACL injury by KT-2000 will increase if the examiner is skillful and the tests are made on the exact position of knee joint.

  • PDF

Robo-Advisor Algorithm with Intelligent View Model (지능형 전망모형을 결합한 로보어드바이저 알고리즘)

  • Kim, Sunwoong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-55
    • /
    • 2019
  • Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.

Subject-Balanced Intelligent Text Summarization Scheme (주제 균형 지능형 텍스트 요약 기법)

  • Yun, Yeoil;Ko, Eunjung;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.141-166
    • /
    • 2019
  • Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.

Effects of an Aspirated Radiation Shield on Temperature Measurement in a Greenhouse (강제 흡출식 복사선 차폐장치가 온실의 기온측정에 미치는 영향)

  • Jeong, Young Kyun;Lee, Jong Goo;Yun, Sung Wook;Kim, Hyeon Tae;Ahn, Enu Ki;Seo, Jae Seok;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.78-85
    • /
    • 2019
  • This study was designed to examine the performance of an aspirated radiation shield(ARS), which was made at the investigator's lab and characterized by relatively easier making and lower costs based on survey data and reports on errors in its measurements of temperature and relative humidity. The findings were summarized as follows: the ARS and the Jinju weather station made measurements and recorded the range of maximum, average, and minimum temperature at $2.0{\sim}34.1^{\circ}C$, $-6.1{\sim}22.2^{\circ}C$, $-14.0{\sim}15.1^{\circ}C$ and $0.4{\sim}31.5^{\circ}C$, $-5.8{\sim}22.0^{\circ}C$, $-14.1{\sim}16.3^{\circ}C$, respectively. There were no big differences in temperature measurements between the two institutions except that the lowest and highest point of maximum temperature was higher on the campus by $1.6^{\circ}C$ and $2.6^{\circ}C$, respectively. The measurements of ARS were tested against those of a standard thermometer. The results show that the temperature measured by ARS was lower by $-2.0^{\circ}C$ or higher by $1.8^{\circ}C$ than the temperature measured by a standard thermometer. The analysis results of its correlations with a standard thermometer reveal that the coefficient of determination was 0.99. Temperature was compared between fans and no fans, and the results show that maximum, average, and minimum temperature was higher overall with no fans by $0.5{\sim}7.6^{\circ}C$, $0.3{\sim}4.6^{\circ}C$ and $0.5{\sim}3.9^{\circ}C$, respectively. The daily average relative humidity measurements were compared between ARS and the weather station of Jinju, and the results show that the measurements of ARS were a little bit higher than those of the Jinju weather station. The measurements on June 27, July 26 and 29, and August 20 were relatively higher by 5.7%, 5.2%, 9.1%, and 5.8%, respectively, but differences in the monthly average between the two institutions were trivial at 2.0~3.0%. Relative humidity was in the range of -3.98~+7.78% overall based on measurements with ARS and Assman's psychometer. The study analyzed correlations in relative humidity between the measurements of the Jinju weather station and those of Assman's psychometer and found high correlations between them with the coefficient of determination at 0.94 and 0.97, respectively.

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.

KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon (Bi-LSTM 기반의 한국어 감성사전 구축 방안)

  • Park, Sang-Min;Na, Chul-Won;Choi, Min-Seong;Lee, Da-Hee;On, Byung-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.219-240
    • /
    • 2018
  • Sentiment analysis, which is one of the text mining techniques, is a method for extracting subjective content embedded in text documents. Recently, the sentiment analysis methods have been widely used in many fields. As good examples, data-driven surveys are based on analyzing the subjectivity of text data posted by users and market researches are conducted by analyzing users' review posts to quantify users' reputation on a target product. The basic method of sentiment analysis is to use sentiment dictionary (or lexicon), a list of sentiment vocabularies with positive, neutral, or negative semantics. In general, the meaning of many sentiment words is likely to be different across domains. For example, a sentiment word, 'sad' indicates negative meaning in many fields but a movie. In order to perform accurate sentiment analysis, we need to build the sentiment dictionary for a given domain. However, such a method of building the sentiment lexicon is time-consuming and various sentiment vocabularies are not included without the use of general-purpose sentiment lexicon. In order to address this problem, several studies have been carried out to construct the sentiment lexicon suitable for a specific domain based on 'OPEN HANGUL' and 'SentiWordNet', which are general-purpose sentiment lexicons. However, OPEN HANGUL is no longer being serviced and SentiWordNet does not work well because of language difference in the process of converting Korean word into English word. There are restrictions on the use of such general-purpose sentiment lexicons as seed data for building the sentiment lexicon for a specific domain. In this article, we construct 'KNU Korean Sentiment Lexicon (KNU-KSL)', a new general-purpose Korean sentiment dictionary that is more advanced than existing general-purpose lexicons. The proposed dictionary, which is a list of domain-independent sentiment words such as 'thank you', 'worthy', and 'impressed', is built to quickly construct the sentiment dictionary for a target domain. Especially, it constructs sentiment vocabularies by analyzing the glosses contained in Standard Korean Language Dictionary (SKLD) by the following procedures: First, we propose a sentiment classification model based on Bidirectional Long Short-Term Memory (Bi-LSTM). Second, the proposed deep learning model automatically classifies each of glosses to either positive or negative meaning. Third, positive words and phrases are extracted from the glosses classified as positive meaning, while negative words and phrases are extracted from the glosses classified as negative meaning. Our experimental results show that the average accuracy of the proposed sentiment classification model is up to 89.45%. In addition, the sentiment dictionary is more extended using various external sources including SentiWordNet, SenticNet, Emotional Verbs, and Sentiment Lexicon 0603. Furthermore, we add sentiment information about frequently used coined words and emoticons that are used mainly on the Web. The KNU-KSL contains a total of 14,843 sentiment vocabularies, each of which is one of 1-grams, 2-grams, phrases, and sentence patterns. Unlike existing sentiment dictionaries, it is composed of words that are not affected by particular domains. The recent trend on sentiment analysis is to use deep learning technique without sentiment dictionaries. The importance of developing sentiment dictionaries is declined gradually. However, one of recent studies shows that the words in the sentiment dictionary can be used as features of deep learning models, resulting in the sentiment analysis performed with higher accuracy (Teng, Z., 2016). This result indicates that the sentiment dictionary is used not only for sentiment analysis but also as features of deep learning models for improving accuracy. The proposed dictionary can be used as a basic data for constructing the sentiment lexicon of a particular domain and as features of deep learning models. It is also useful to automatically and quickly build large training sets for deep learning models.

Study on the Characteristics of Cultivation Period, Adaptive Genetic Resources, and Quantity for Cultivation of Rice in the Desert Environment of United Arab Emirates (United Arab Emirates 사막환경에서 벼 재배를 위한 재배기간, 유전자원 및 수량 특성 연구)

  • Jeong, Jae-Hyeok;Hwang, Woon-Ha;Lee, Hyeon-Seok;Yang, Seo-Yeong;Choi, Myoung-Goo;Kim, Jun-Hwan;Kim, Jae-Hyeon;Jung, Kang-Ho;Lee, Su-Hwan;Oh, Yang-Yeol;Lee, Kwang-Seung;Suh, Jung-Pil;Jung, Ki-Yuol;Lee, Jae-Su;Choi, In-Chan;Yu, Seung-hwa;Choi, Soon-Kun;Lee, Seul-Bi;Lee, Eun-Jin;Lee, Choung-Keun;Lee, Chung-Kuen
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.133-144
    • /
    • 2022
  • This study was conducted to investigate the cultivation period, adaptive genetic resources, growth and development patterns, and water consumption for rice cultivation in the desert environment of United Arab Emirates (UAE). R esearch on rice cultivation in the desert environment is expected to contribute to resolving food shortages caused by climate change and water scarcity. It was found that the optimal cultivation period of rice was from late November to late April of the following year during which the low temperature occurred at the vegetative growth stage of rice in the UAE. Asemi and FL478 were selected to be candidate cultivars for temperature and day-length conditions in the desert areas as a result of pre-testing genetic resources under reclaimed soil and artificial meteorological conditions. In the desert environment in the UAE, FL478 died before harvest due to the etiolation and poor growth in the early stage of growth. In contrast, Asemi overcame the etiolation in the early stage of growth, which allowed for harvest. The vegetative growth phases of Asemi were from early December to early March of the following year whereas its reproductive growth and ripening phases were from early March to late March and from late March to late April, respectively. The yield of milled rice for Asemi was 763kg/10a in the UAE, which was about 41.8% higher than that in Korea. Such an outcome was likely due to the abundant solar radiation during the reproductive growth and grain filling periods. On the other hand, water consumption during the cultivation period in the UAE was 2,619 ton/10a, which was about three times higher than that in Korea. These results suggest that irrigation technology and development of cultivation methods would be needed to minimize water consumption, which would make it economically viable to grow rice in the UAE. In addition, select on of genetic resources for the UAE desert environments such as minimum etiolation in the early stages of growth would be merited further studies, which would promote stable rice cultivation in the arid conditions.

Lodging-Tolerant, High Yield, Mechanized-Harvest Adaptable and Small Seed Soybean Cultivar 'Aram' for Soy-sprout (내도복 다수성 기계수확 적응 소립 나물용 콩 '아람')

  • Kang, Beom Kyu;Kim, Hyun Tae;Ko, Jong Min;Yun, Hong Tai;Lee, Young Hoon;Seo, Jeong Hyun;Jung, Chan Sik;Shin, Sang Ouk;Oh, Eun Yeong;Kim, Hong Sik;Oh, In Seok;Baek, In Youl;Oh, Jae Hyun;Seo, Min Jeong;Yang, Woo Sam;Kim, Dong Kwan;Gwak, Do Yeon
    • Korean Journal of Breeding Science
    • /
    • v.51 no.3
    • /
    • pp.214-221
    • /
    • 2019
  • 'Aram' is a soybean cultivar developed for soy-sprout. It was developed from the crossing of 'Bosug' (Glycine max IT213209) and 'Camp' (G. max IT267356) cultivars in 2007. F1 plants and F2 population were developed in 2009 and 2010. A promising line was selected in the F5 generation in 2011 using the pedigree method and it was evaluated for agronomic traits, yield, and soy-sprouts characteristics in a preliminary yield trial (PYT) in 2012 and an advanced yield trial (AYT) in 2013. Agronomic traits and yield were stable between 2014 and 2016 in the regional yield trial (RYT) in four regions (Suwon, Naju, Dalseong, and Jeju). Morphological characteristics of 'Aram' are as follows: determinate plant type, purple flowers, grey pubescence, yellow pods, and small, yellow, and spherical seeds (9.9 g 100-seeds-1) with a light brown hilum. The flowering date was the 5th of August and the maturity date was the 15th of October. Plant height, first pod height, number of nods, number of branches, and number of pods were 65 cm, 13 cm, 16, 4.5, and 99, respectively. In the sprout test, germination rate and sprout characteristics of 'Aram' were comparable to that of the 'Pungsannamulkong' cultivar. The yield of 'Aram' was 3.59 ton ha-1 and it was 12% higher than that of 'Pungsannamulkong' in southern area of Korea. The yield of 'Aram' in the Jeju region, which is the main region for soybean sprout production, was 20% higher than that of 'Pungsannamulkong'. The height of the first pod and the tolerance to lodging and pod shattering, which are connected to the adaptation to mechanized harvesting, were higher in 'Aram' compared to those in 'Pungsannamulkong'. Therefore, the 'Aram' cultivar is expected to be broadly cultivated because of its higher soybean sprout quality, and seed yield and better adaptation to mechanized harvesting. (Registration number: 7718)

Rebirth of the French baroque opera and analysis of Quinault and Lully's Atys (프랑스 바로크 오페라의 부활과 키노와 륄리의 『앗티스』 분석)

  • 강희석
    • 한국프랑스학논집
    • /
    • v.108
    • /
    • pp.1-45
    • /
    • 2019
  • The objective of this work is to study the rebirth of the French baroque opera and to analyze Atys of Quinault and Lully. Accordingly, it can appear interesting to take into account not only the reception of Atys in the 17th century in France, but also its representations in 1987. Then, it seems important to us to examine the studies on the modification of the myth in Atys, while questioning the legitimacy of the Fasti of Ovid as a primary source. Lastly, we will endeavor to emphasize the influence of Natale Conti's Mythologies on Atys, and that of Michel de Marolles's the Tableaux du Temple des Muses on the scene of the sleep of the hero. In a general way, in regard to the influence of the sources in Atys, these two works drew until now only very little the attention of criticism. The difficulties which Louis XIV crosses at the time of the genesis of Atys, such as the death of the marshal of Turenne or the departure of Louise de La Vallière to the convent, seem to have nourished the choices of Quinault and Lully. Atys is an admirable spectacle with the changes at sight of the decorations, the varied machines and the splendid costumes, but in spite of the immense success of this opera, he is forgotten after the representation given at Fontainebleau in 1753. Two centuries later, les Arts Florissants' production of Atys in 1987 - with its triumph which one knows - seems to announce a rebirth of the French baroque opera. William Christie and Jean-Marie Villégier still succeed in presenting their production in 2011 thanks to Ronald Stanton, American fortunate who was impressed by the representation of Atys in 1987. Villégier and his artistic team choose a single decoration and remove the machines in order to place work at the court plunged into mourning of Louis XIV twenty years after the premiere of Atys. The "classicism" of their dramatic presentation emphasizes the classical dramaturgy and the tragic side of this opera. Criticisms often stress the importance of Ovid's Fasti as a primary source, while adding his Metamorphoses as a secondary source (the metamorphosis of Atys in pine and the scene of his sleep). Quinault borrows indeed from the Fasti some elements : in love with Atys, Cybele entrusts the responsibility to him of keep her temple ; the reciprocal love between Atys and Sangaride causes the revenge on the goddess. However he borrows more from the French translation of Natale Conti's Mythologies which present the Phrygian version of the myth of Atys. In the first three accounts of this version, one finds common points with the opera : 1) Atys refuses the physical desire of Cybele ; the goddess makes Atys insane instead of making die Sangaride ; 2) the lover of the hero is daughter of the river of Sangar ; Cybele makes change into pine Atys who committed suicide (or ready to commit suicide) ; 3) the goddess discovers the physical relation of the young couple. Natale Conti's Mythologies also present the Lydian version of the myth : a furious wild boar sent by irritated Zeus kill Atys and several people. One can suppose that this part undoubtedly influences the "monster" and its "dreadful howls" evoked by Atys in a fit of insanity. Moreover, the dreams make discover in Atys the intentions of Cybele, which is not without relationship with the translated text of Natale Conti : the Mythologies indicate that sweet Sleep reveals "the intentions & the plans of the Gods." To manufacture the famous scene of the sleep of the hero, Quinault and Lully make use of the annotations of the "Palace of the Sleep" located at the end of the Tableaux du Temple des Muses : Michel de Marolles translates and explains the texts of Catullus (the sleep of Atys), of Ovid (the Sleep and his three sons), and of Ausonius (good dreams / bad dreams). In spite of the important influence of these sources, Quinault and Lully modify some elements of the myth : the theme of castration is removed because of the proprieties ; the suicide of Atys is at the same time an act of love and an act of revolt against Cybele ; the cruel goddess is also a desperate and weak lover; the invention of the character of Celenus returns the love of the young prohibited and tragic. Quinault fascinate the contemporary public with the interior movements of complex characters and the music of Lully emphasizes this quality of the libretto.