• Title/Summary/Keyword: 기계인간

Search Result 58,771, Processing Time 0.085 seconds

Development of Heated-Air Dryer for Agricultural Waste Using Waste Heat of Incineration Plant (소각장 폐열을 활용한 농업폐기물 열풍 건조장치 개발)

  • Song, Dae-Bin;Lim, Ki-Hyeon;Jung, Dae-Hong
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • To manufacturing of solid fuel by reuse of the wastes, the drying unit which have 500 kg/hr of drying capacity was developed and experimentally evaluate the performance. The spinach grown in Nam-hae island were used for the experiments and investigated of the heated-air drying characteristics as the inlet amount of raw materials, raw material stirring status, conveying type and drying time. The drying air heated by the energy derived from the steam which is supplied from the incineration plant. The moisture contents of raw materials were measured 85.65%. The inlet flow rate of drying air made a difference as the depth of the raw materials loaded on the drying unit and temperature has showed 108~144℃. The drying speed of the mixed drying more than doubled as that of non mixed drying under the same drying type, inlet amount, drying time and drying air temperature. In each experiment, the drying capacity have showed over 500 kg/hr. A drying efficiency of the ratio of drying consumption energy to input energy was 33.46%, lower than the average of 57.76% for the 157 conventional dryers. Because developed dryer must have a drying time of less than one hour, it is considered that the dry efficiency has been reduced due to the loss of wind volume during drying. If waste heat from incineration plant is used as a direct heat source, the dry air temperature is expected to be at least 160℃, greatly improving the drying capacity.

Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning (투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과)

  • Kim, Kyung Mock;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • Stock market investors are generally split into foreign investors, institutional investors, and individual investors. Compared to individual investor groups, professional investor groups such as foreign investors have an advantage in information and financial power and, as a result, foreign investors are known to show good investment performance among market participants. The purpose of this study is to propose an investment strategy that combines investor-specific transaction information and machine learning, and to analyze the portfolio investment performance of the proposed model using actual stock price and investor-specific transaction data. The Korea Exchange offers daily information on the volume of purchase and sale of each investor to securities firms. We developed a data collection program in C# programming language using an API provided by Daishin Securities Cybosplus, and collected 151 out of 200 KOSPI stocks with daily opening price, closing price and investor-specific net purchase data from January 2, 2007 to July 31, 2017. The self-organizing map model is an artificial neural network that performs clustering by unsupervised learning and has been introduced by Teuvo Kohonen since 1984. We implement competition among intra-surface artificial neurons, and all connections are non-recursive artificial neural networks that go from bottom to top. It can also be expanded to multiple layers, although many fault layers are commonly used. Linear functions are used by active functions of artificial nerve cells, and learning rules use Instar rules as well as general competitive learning. The core of the backpropagation model is the model that performs classification by supervised learning as an artificial neural network. We grouped and transformed investor-specific transaction volume data to learn backpropagation models through the self-organizing map model of artificial neural networks. As a result of the estimation of verification data through training, the portfolios were rebalanced monthly. For performance analysis, a passive portfolio was designated and the KOSPI 200 and KOSPI index returns for proxies on market returns were also obtained. Performance analysis was conducted using the equally-weighted portfolio return, compound interest rate, annual return, Maximum Draw Down, standard deviation, and Sharpe Ratio. Buy and hold returns of the top 10 market capitalization stocks are designated as a benchmark. Buy and hold strategy is the best strategy under the efficient market hypothesis. The prediction rate of learning data using backpropagation model was significantly high at 96.61%, while the prediction rate of verification data was also relatively high in the results of the 57.1% verification data. The performance evaluation of self-organizing map grouping can be determined as a result of a backpropagation model. This is because if the grouping results of the self-organizing map model had been poor, the learning results of the backpropagation model would have been poor. In this way, the performance assessment of machine learning is judged to be better learned than previous studies. Our portfolio doubled the return on the benchmark and performed better than the market returns on the KOSPI and KOSPI 200 indexes. In contrast to the benchmark, the MDD and standard deviation for portfolio risk indicators also showed better results. The Sharpe Ratio performed higher than benchmarks and stock market indexes. Through this, we presented the direction of portfolio composition program using machine learning and investor-specific transaction information and showed that it can be used to develop programs for real stock investment. The return is the result of monthly portfolio composition and asset rebalancing to the same proportion. Better outcomes are predicted when forming a monthly portfolio if the system is enforced by rebalancing the suggested stocks continuously without selling and re-buying it. Therefore, real transactions appear to be relevant.

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.

Effect of Ta/Cu Film Stack Structures on the Interfacial Adhesion Energy for Advanced Interconnects (미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석)

  • Son, Kirak;Kim, Sungtae;Kim, Cheol;Kim, Gahui;Joo, Young-Chang;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2021
  • The quantitative measurement of interfacial adhesion energy (Gc) of multilayer thin films for Cu interconnects was investigated using a double cantilever beam (DCB) and 4-point bending (4-PB) test. In the case of a sample with Ta diffusion barrier applied, all Gc values measured by the DCB and 4-PB tests were higher than 5 J/㎡, which is the minimum criterion for Cu/low-k integration without delamination. However, in the case of the Ta/Cu sample, measured Gc value of the DCB test was lower than 5 J/㎡. All Gc values measured by the 4-PB test were higher than those of the DCB test. Measured Gc values increase with increasing phase angle, that is, 4-PB test higher than DCB test due to increasing plastic energy dissipation and roughness-related shielding effects, which matches well interfacial fracture mechanics theory. As a result of the 4-PB test, Ta/Cu and Cu/Ta interfaces measured Gc values were higher than 5 J/㎡, suggesting that Ta is considered to be applicable as a diffusion barrier and a capping layer for Cu interconnects. The 4-PB test method is recommended for quantitative adhesion energy measurement of the Cu interconnect interface because the thermal stress due to the difference in coefficient of thermal expansion and the delamination due to chemical mechanical polishing have a large effect of the mixing mode including shear stress.

Comparison of Models for Stock Price Prediction Based on Keyword Search Volume According to the Social Acceptance of Artificial Intelligence (인공지능의 사회적 수용도에 따른 키워드 검색량 기반 주가예측모형 비교연구)

  • Cho, Yujung;Sohn, Kwonsang;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.103-128
    • /
    • 2021
  • Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.

A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019 (우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1465-1483
    • /
    • 2020
  • Evapotranspiration is a concept that includes the evaporation from soil and the transpiration from the plant leaf. It is an essential factor for monitoring water balance, drought, crop growth, and climate change. Actual evapotranspiration (AET) corresponds to the consumption of water from the land surface and the necessary amount of water for the land surface. Because the AET is derived from multiplying the crop coefficient by the reference evapotranspiration (ET0), an accurate calculation of the ET0 is required for the AET. To date, many efforts have been made for gridded ET0 to provide multiple products now. This study presents a comparison between the ET0 products such as FAO56-PM, LDAPS, PKNU-NMSC, and MODIS to find out which one is more suitable for the local-scale hydrological and agricultural applications in Korea, where the heterogeneity of the land surface is critical. In the experiment for the period between 2016 and 2019, the daily and 8-day products were compared with the in-situ observations by KMA. The analyses according to the station, year, month, and time-series showed that the PKNU-NMSC product with a successful optimization for Korea was superior to the others, yielding stable accuracy irrespective of space and time. Also, this paper showed the intrinsic characteristics of the FAO56-PM, LDAPS, and MODIS ET0 products that could be informative for other researchers.

A Systematic Review of Developmental Coordination Disorders in South Korea: Evaluation and Intervention (국내의 발달성협응장애(DCD) 연구에 관한 체계적 고찰 : 평가와 중재접근 중심으로)

  • Kim, Min Joo;Choi, Jeong-Sil
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.19 no.1
    • /
    • pp.69-82
    • /
    • 2021
  • Objective : This recent work intended to provide basic information for researchers and practitioners related to occupational therapy about Developmental Coordination Disorder (DCD) in South Korea. The previous research of screening DCD and the effects of intervention programs were reviewed. Methods : Peer-reviewed papers relating to DCD and published in Korea from January 1990 to December 2020 were systematically reviewed. The search terms "developmental coordination disorder," "development coordination," and "developmental coordination" were used to identify previous Korean research in this area from three representation database, the Research Information Sharing Service, Korean Studies Information Service System, and Google Scholar. We found a total of 4,878 articles identified through the three search engines and selected seventeen articles for analysis after removing those that corresponded to the overlapping or exclusion criteria. We adopted "the conceptual model" to analyze the selected articles about DCD assessment and intervention. Results : We found that twelve of the 17 studies showed the qualitative level of Level 2 using non-randomized approach between the two groups. The Movement Assessment Battery for Children and its second edition were the most frequently used tools in assessing children for DCD. Among the intervention studies, the eight articles (47%) were adopted a dynamic systems approach; a normative functional skill framework and cognitive neuroscience were each used in 18% of the pieces; and 11% of the articles were applied neurodevelopmental theory. Only one article was used a combination approach of normative functional skill and general abilities. These papers were mainly focused on the movement characteristics of children with DCD and the intervention effect of exercise or sports programs. Conclusion : Most of the reviewed studies investigated the movement characteristics of DCD or explore the effectiveness of particular intervention programs. In the future, it would be useful to investigate the feasibility of different assessment tools and to establish the effectiveness of various interventions used in rehabilitation for better motor performance in children with DCD.

Possibility of Using Non-selective Herbicides as Desiccants for Improving Soybean Harvest Efficiency (콩 수확 효율 증진을 위한 건조제로서 비선택성 제초제의 활용 가능성)

  • Won, Ok Jae;Hong, Seo yeon;Suh, Eun Ji;Park, Jae-Sung;Lee, Hong Seok;Park, Jin-Ki;Ryu, Jong-Soo;Han, Won-Young;Han, Kil Su;Song, Duk Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.358-364
    • /
    • 2021
  • This study was conducted to select a desiccant and determine its concentration for safe usage to improve the harvesting efficiency of soybeans. Soybeans were treated with a desiccant (non-selective herbicide) before and after the maturation stage. The drying effect of the desiccant was higher at earlier treatment times than at the maturation stage, but the difference was not statistically significant. The higher efficacy might be related to the drying process of the leaves and stems, with most of the leaves and stems having already been dried by the time of hand harvesting. Desiccant treatments had no adverse effects on soybean yield, weight of 100 grains, seed quality, or seed germination rate compared with the untreated control. Pesticide residue analysis showed minimum residue concentration to be lower than the tolerance level of pesticide residues. In conclusion, it was confirmed that the desiccant was effective in drying soybean, and that there was no damage to the quality of soybean seeds. In addition to the drying effect, the dessicant treatment also facilitates the removal of weeds that interfere with the mechanical harvest and improves harvesting efficiency through the drying of the growth imbalanced individual. The desiccant treatment is expected to shorten the mechanical harvesting time by 1-2 weeks. It is thought that the selection of the proper cultivation period for other crops after soybean cultivation will be more advantageous.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.

The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring (광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈)

  • Yang, Hyunyoung;Kang, Minseok;Kim, Joon;Ryu, Daun;Kim, Su-Jin;Chun, Jung-Hwa;Lim, Jong-Hwan;Park, Chan Woo;Yun, Soon Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.198-221
    • /
    • 2021
  • After large-scale reforestation in the 1960s and 1970s, forests in Korea have gradually been aging. Net ecosystem CO2 exchange of old-growth forests is theoretically near zero; however, it can be a CO2 sink or source depending on the intervention of disturbance or management. In this study, we report the CO2 budget dynamics of the Gwangneung deciduous old-growth forest (GDK) in Korea and examined the following two questions: (1) is the preserved GDK indeed CO2 neutral as theoretically known? and (2) can we explain the dynamics of CO2 budget by the common mechanisms reported in the literature? To answer, we analyzed the 15-year long CO2 flux data measured by eddy covariance technique along with other biometeorological data at the KoFlux GDK site from 2006 to 2020. The results showed that (1) GDK switched back-and-forth between sink and source of CO2 but averaged to be a week CO2 source (and turning to a moderate CO2 source for the recent five years) and (2) the interannual variability of solar radiation, growing season length, and leaf area index showed a positive correlation with that of gross primary production (GPP) (R2=0.32~0.45); whereas the interannual variability of both air and surface temperature was not significantly correlated with that of ecosystem respiration (RE). Furthermore, the machine learning-based model trained using the dataset of early monitoring period (first 10 years) failed to reproduce the observed interannual variations of GPP and RE for the recent five years. Biomass data analysis suggests that carbon emissions from coarse woody debris may have contributed partly to the conversion to a moderate CO2 source. To properly understand and interpret the long-term CO2 budget dynamics of GDK, new framework of analysis and modeling based on complex systems science is needed. Also, it is important to maintain the flux monitoring and data quality along with the monitoring of coarse woody debris and disturbances.