• Title/Summary/Keyword: 기계인간

Search Result 58,801, Processing Time 0.057 seconds

A Study on the Optimal Design According to the Piston Shape of the 3/8 Hydraulic Quick Coupler (3/8" 유압 퀵 커플러의 피스톤형상을 고려한 최적설계에 관한 연구)

  • Kim, Nam-Yong;Wu, Yu-Ting;Qin, Zhen;Cho, Yong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.66-71
    • /
    • 2021
  • A hydraulic quick coupler is a component used to easily connect or disconnect pipes or hoses that transfer high pressure fluid without leakage in various mechanical devices. In this study, to obtain an optimal design of a 3/8" hydraulic quick coupler, the effect of different shapes of the internal piston on the internal flow characteristics of the coupler was analyzed and evaluated through numerical analysis based on computational fluid dynamics. Subsequently, the optimal shape design of the internal piston was obtained by comparing the flow characteristics results such as velocity distribution, temperature distribution, and the pressure drop of the hydraulic quick coupler.

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

Robust Frame Design for Battery Exchange-Type Electric Motorcycle (배터리 교환형 전기 이륜차 활성화를 위한 프레임 강건 설계)

  • Kim, Sang-Hyun;Kim, Gaun;Na, Dayul;Park, Jungwoo;Yu, Dahae;Rho, Kwanghyun;Lee, Jaesang;Zu, Seoungdon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.113-118
    • /
    • 2020
  • Recently, eco-friendly electric motorcycles have been considered to replace aging gasoline motorcycles to reduce the amount of suspended fine dust in air. However, existing rechargeable battery-powered electric motorcycles have been found unacceptable by users because of their many limitations, such as long charging time, short travel distance per charge, and low driving speed. To overcome the drawbacks of conventional electric motorcycles, this paper proposes an exchangeable battery-powered electric motorcycle and a new frame shape for housing the exchangeable battery. The proposed frame is similar to that of current electric motorcycles; however, the shape and position of the saddle support, battery, and controller mount section are redesigned. The safety of the presented frame is verified through static and dynamic analyses using ABAQUS. In particular, the dynamic analysis is conducted under the most extreme condition among the various operating situations, thus confirming the robustness of the proposed frame design.

A Study of Structural Stability of Complex CNC Automatic Lathe Base (CNC 복합자동선반 베이스 구조 안전성에 관한 연구)

  • Lee, Sang-Hyeop;Yang, Dong-Ho;Cha, Seung-Whan;Kwak, Jin;Lee, Jong-Chan;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.8
    • /
    • pp.80-85
    • /
    • 2021
  • This study is to evaluate the structural stability of heavy duty structure of the Complex CNC automatic lathe. The analysis conditions were analyzed by applying the weight and load of the part itself and then applying the weight of the upper assembly unit. As a result of the structural analysis, the values of stress and strain are small and safety factor is high, and as a result of the dynamic analysis, there will be no resonance outside the equipment driving area, so there will be no problem in equipment stability.

Robust Design of Descending Lifeline Using Double Square Linkage Mechanism (이중 4절링크 기구를 이용한 완강기 강건 설계)

  • Park, Jung-Woo;Yun, Seul-Gi;Jung, Geun-Hak;Jung, Min-Hee;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.108-113
    • /
    • 2021
  • Recently, a new concept of a one-touch descending lifeline has been proposed to address the drawbacks of the conventional descending lifeline, which can be easily installed and quickly evacuated in the case of a fire emergency. All separate parts for escape are initially mounted in a box, and the link-type support is spread out of the window by pushing the handle attached to the box. In this study, the proposed double square linkage mechanism was redesigned, and its safety is verified by determining an appropriate moment of inertia of the link through finite element analysis using Abaqus. The shape and assembling method of the reel and speed controller were also modified such that the safety belt was simultaneously unfolded with link-type support. Finally, the feasibility of the proposed one-touch all-in-one descending lifeline was confirmed through fabrication.

Improvement of Thermal Efficiency and Emission by Lean Combustion in a Boosted Spark-Ignition Engine Fueled with Syngas (합성가스 스파크점화 과급 엔진에서 희박 연소를 통한 열효율 및 배기 개선)

  • Park, Hyunwook;Lee, Junsun;Jamsran, Narankhuu;Oh, Seungmook;Kim, Changup;Lee, Yonggyu;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Lean combustion was applied to improve the thermal efficiency and emission in a single-cylinder, spark-ignition engine fueled with syngas. Under naturally aspirated conditions, the lean combustion significantly improved the thermal efficiency compared to the stoichiometric combustion, mainly due to the reduction in heat transfer loss. Intake air boost was applied to compensate the low power output of the lean combustion. The gross indicated power of 24.8 kW was achieved by increasing the intake pressure up to 1.6 bar at excess air ratio of 2.2. The nitrogen oxides showed near zero level, but the carbon monoxide emission was significant.

A Study of the Vibration of an Axial Flow Pump through FSI Analysis Method (유체-구조 연성해석을 통한 축류펌프의 진동 연구)

  • Lee, Bo-Ram;Yun, Tae-Jong;Oh, Won-Bin;Lee, Chung-Woo;Kim, Hak Hyoung;Jeong, Yeong Jae;Kim, Ill-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.107-112
    • /
    • 2021
  • Pressure, which is a dynamic characteristic of a floodgate, is predicted using an FSI analysis method. A fluid analysis model and a hydrology analysis model were used as analysis models. As a result of the analysis, we found that a warped model has smaller acceleration than a square model. Additionally, this numerical analysis technique was applied to the actual hydrology, and the analysis results were compared with the results of the vibration tests. As a result, we confirmed that there is a small difference between the results of the vibration tests and the results of the FSI analysis. Through this analysis, the applicability and reliability of the FSI analysis method were verified. We concluded that the pressure of a floodgate can be measured through an FSI analysis method.

Structural Analysis and Dynamic Characteristics Analysis of CNC Automatic Lathe Structure (CNC 복합 자동선반 구조물의 구조해석 및 동특성 분석에 관한 연구)

  • Yang, Dong-Ho;Lee, Sang-Hyeop;Cha, Seung-Hwan;Kwak, Jin;Lee, Jong-Chan;Lee, Young-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.21-27
    • /
    • 2022
  • This study was conducted to evaluate the structural stability of a CNC automatic lathe structure and avoid resonance. The analysis conditions were analyzed by applying the weight of the upper assembly. From the structural analysis, the stress and deformation were low, and the safety factor was high. From the dynamic characteristic analysis, it was determined that resonance does not occur because the natural frequency is outside the driving range. The error between the dynamic characteristic analysis and vibration test results is very low; thus, the reliability of the analysis results can be secured.

A Study on Optimal Design of CNG Charging Nozzle Considering Flow Characteristics (유동특성을 고려한 CNG 충전 노즐의 최적 설계에 관한 연구)

  • Gwak, Gi-Myung;Baek, Jin-Uk;Kim, Nam-Yong;Cho, Yong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.15-21
    • /
    • 2022
  • This study considered the internal flow considering the internal shape of the CNG filling nozzle, which is widely distributed in Korea. The CNG filling nozzle is the last part to pass through in the CNG filling process and has a significant influence on the filling efficiency. The mechanism was identified by disassembling the CNG filling nozzle and performing a flow analysis according to the mechanism. Consequently, the energy loss owing to eddy currents in the flow was determined, and modeling was proposed to reduce the energy loss by simplifying the shape and parts.

Study on the Optimal Design of the Nozzle Shape of the 700 bar Hydrogen Refueling Nozzle for Hydrogen Electric Vehicles (수소전기차용 700 bar 수소충전노즐의 노즐형상을 고려한 최적설계에 관한 연구)

  • Baek, Jin-Uk;Gwak, Gi-Myung;Kim, Nam-Yong;Cho, Yong-Min;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.28-33
    • /
    • 2022
  • In this study, we analyze the flow characteristics according to the internal shape of a 700bar hydrogen charging gun for hydrogen electric vehicles. When charging hydrogen, it receives a high-pressure charging pressure. At this time, we analyze the flow characteristics according to the shape of the nozzle and find the shape of the nozzle that minimizes energy loss. Ultimately, the optimal design of the nozzle was obtained by comparing the pressure difference between the inlet pressure and outlet pressure under a fixed mass flow condition.