• Title/Summary/Keyword: 기계식교반

Search Result 22, Processing Time 0.014 seconds

Drying and Storage Characteristics of Small Scale Accumulated / Stirred Storage and Drying Bin (소형 교반식 저장건조빈의 벼 건조 및 저장 특성)

  • Park, Jong-Won;Ning, Xiao Feng;Cha, Yeong-Ok;Kang, Tae-Hwan;Han, Chung-Su;Cho, Sung-Chan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Not only does the labor of manufacturers used most in the drying process after rice harvest, but it also is having huge influence in quality. Also, because drying storage of rice production around the whole country is scarce with original facility, it has become a very important matter that farms develop their own safe and high-quality facilities to store and dry rice. Therefore, this study developed a small scale accumulated storage and drying bin, assessed nalyzed drying properties, and conducted analysis of research on the property of quality when storing for a long time. As a result, the drying speed of the small scale accumulated storage and drying bin was adequate of 0.042%/hr and was shown that the experimental static pressure and theoretical static pressure corresponded. Also, it was shown that drying cost was up to about 6 times inexpensive that heated air drying. For the storage of the small scale accumulated storage and drying bin, average of moisture content was around 16.5 until early April and decreased to 15.7% in July. Inside storage was maintained to 12.13% until early April and slightly increased to 14% after May. It was shown that inside storage had higher hardness and rate of cracking than the small scale accumulated storage and drying bin by storage conditions and germination rate was shown a little higher when stored in the small scale accumulated storage and drying bin.

Principle and Application of Composting for Soils Contaminated with Hazardous Organic Pollutants (오염토양 정화를 위한 콤포스팅 기술의 원리와 적용에 관한 고찰)

  • Park, Joon-Seok;Lee, Noh-Sup;In, Byung-Hoon;Namkoong, Wan;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2001
  • Composting is a cost-effective and environmentally-sound technology to treat soils contaminated with hazardous organic pollutants. Pollutants to be treated are as follows: explosives, phenolic compounds, PAHs, petroleum hydrocarbons, pesticides, and etc. Composting systems are windrow, static pile, and in-vessel. Design and operational parameters of composting are aeration modes, temperature, moisture content, nutrient supplement, amendment added, and etc. Appropriate oxygen concentration of composting for contaminated soils are 5~15%, while some compounds are degraded well at the low $O_2$ concentration of 2~5%. The most diverse microorganisms live in the temperature of $25{\sim}40^{\circ}$. 50~90% of the soil field capacity is the moisture content not to make a problem in composting. Assuming a bacterial chemical equation is $C_{60}H_{87}O_{23}N_{12}P$, theoretical C : N : P from bacterial chemical portion is approximately 20 : 5 : 1. It should be noted that the ratio does not apply to the total organic carbon measured in a waste because not all carbon metabolized by bacteria is synthesized to new cellular material. Initial C/N ratio of 25~40 is optimum. It is more economical to recycle soils or composts than to add commercial microbes.

  • PDF