• Title/Summary/Keyword: 기계시스템

Search Result 8,423, Processing Time 0.04 seconds

Control Method for Performance Improvement of BLDC Motor used for Propulsion of Electric Propulsion Ship (전기추진선박의 추진용으로 사용되는 브러시리스 직류전동기의 제 어방법에 따른 성능향상에 관한 연구)

  • Jeon, Hyeonmin;Hur, Jaejung;Yoon, Kyoungkuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.802-808
    • /
    • 2019
  • DC motors are used extensively on shipboard, including as the ship's winch operating motor, owing to their simple speed control and excellent output torque characteristics. Moreover, they were used as propulsion motors in the early days of electric propulsion ships. However, mechanical rectifiers, such as brushes, used in DC motors have certain disadvantages. Hence, brushless DC (BLDC) motors are increasingly being used instead. While the electrical characteristics of both types of motors are similar, BLDC motors employ electronic rectifying devices, which use semiconductor elements, instead of mechanical rectifying devices. The inverter system for driving conventional BLDC motors uses a two-phase excitation method so that the waveform of the back electromotive force becomes trapezoidal. This causes harmonics and torque ripple in the phase current switching period in which the winding wire through which the current flows is changed. Researchers have studied and presented various methods to reduce the harmonics and torque ripple. This study applies a cascaded H-bridge multilevel inverter, which implements a proportional-integral speed current controller algorithm in the driving circuit of the BLDC motor for electric propulsion ships using a power analysis program. The simulation results of the modeled BLDC motor show that the driving method of the proposed BLDC motor improves the voltage waveform of the input side of the motor and remarkably reduces the harmonics and torque ripple compared with the conventional driving method.

Artificial Intelligence and College Mathematics Education (인공지능(Artificial Intelligence)과 대학수학교육)

  • Lee, Sang-Gu;Lee, Jae Hwa;Ham, Yoonmee
    • Communications of Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • Today's healthcare, intelligent robots, smart home systems, and car sharing are already innovating with cutting-edge information and communication technologies such as Artificial Intelligence (AI), the Internet of Things, the Internet of Intelligent Things, and Big data. It is deeply affecting our lives. In the factory, robots have been working for humans more than several decades (FA, OA), AI doctors are also working in hospitals (Dr. Watson), AI speakers (Giga Genie) and AI assistants (Siri, Bixby, Google Assistant) are working to improve Natural Language Process. Now, in order to understand AI, knowledge of mathematics becomes essential, not a choice. Thus, mathematicians have been given a role in explaining such mathematics that make these things possible behind AI. Therefore, the authors wrote a textbook 'Basic Mathematics for Artificial Intelligence' by arranging the mathematics concepts and tools needed to understand AI and machine learning in one or two semesters, and organized lectures for undergraduate and graduate students of various majors to explore careers in artificial intelligence. In this paper, we share our experience of conducting this class with the full contents in http://matrix.skku.ac.kr/math4ai/.

Triboelectric Nanogenerator Utilizing Metal-to-Metal Surface Contact (금속-금속 표면 접촉을 활용한 정전 소자)

  • Chung, Jihoon;Heo, Deokjae;Lee, Sangmin
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.301-306
    • /
    • 2019
  • Triboelectric nanogenerator (TENG) is one of the energy harvesting methods in spotlight that can convert mechanical energy into electricity. As TENGs produce high electrical output, previous studies have shown TENGs that can power small electronics independently. However, recent studies have reported limitations of TENG due to air breakdown and field emission. In this study, we developed a triboelectric nanogenerator that utilizes the metal-to-metal surface contact to induce ion-enhanced field emission and electron avalanche for electrons to flow directly between two electrodes. The average peak open-circuit voltage of this TENG was measured as 340 V, and average peak closed-circuit current was measured as 10 mA. The electrical output of this TENG has shown different value depending on the surface charge of surface charge generation layer. The TENG developed in this study have produced RMS power of 0.9 mW, which is 2.4 times higher compared to conventional TENGs. The TENG developed in this study can be utilized in charging batteries and capacitors to power portable electronics and sensors independently.

Fabrication and Transmission Experiment of the Distributed Feedback Laser Diode(DFB-LD) Module for 2.5Gbps Optical Telecommunication System (2.5Gbps 광통신용 distrbuted feedback laser diode(DFB-LD) 모듈 제작 및 광송신 실험)

  • 박경현;강승구;송민규;이중기;조호성;장동훈;박찬용;김정수;김홍만
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 1994
  • We designed and fabricated the single mode fiber pigtailed DFB-LD module for 2.5 Gbps optical communication system. In the design of the DFB-LD module, we made the module divided into two parts of inner sub-module and outer 14-pin butterfly package and cylindrical shaped sub-module contain quasi confocal 2 lens system including optical isolator and electrical connection between these parts via hybrid substrate of bias T circuit. Laser welding was used to assemble the sub-module which requires accurate fixing between optical elements. The fabricated DFB-LD module showed optical coupling efficiency of 20% and - 3 dB small signal response of more than 2.6 GHz. We confirmed mechanical reliability of the module by temperature cycle test where the tested module exhibit optical power fluctuation of less than 10%. Finally we evaluated the performance of the fabricated DFB-LD module as light source of 2.5 Gbps optical communication system, sensitivity of - 30.2 dBm was obtained through 47 km optical fiber transmission under the criterion of $1\times10^{-10}$ BER and transmission penalties were 1.5 dB caused by extinction ratio and 1.0 dB caused by chromatic dispersion of normal single mode fiber. fiber.

  • PDF

Measurement of Tensile Properties for Thin Aluminium Film by Using White Light Interferometer (백색광간섭계를 이용한 알루미늄 박막의 인장 물성 측정)

  • Kim, Sang-Kyo;Oh, Chung-Seog;Lee, Hak-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 2010
  • Thin films play an important role in many technological applications including microelectronic devices, magnetic storage media, MEMS and surface coatings. It is well known that a thin film's material properties can be very different from the corresponding bulk properties and thus there has been a strong need for the development of a reliable test method to measure the mechanical properties of a thin film. We have developed an alternative and convenient test method to overcome the limitations of previous membrane deflection experiment and uniaxial tensile test by adopting a white light interferometer having sub-nanometer out-of-plane displacement resolution. The freestanding aluminium specimens are tested to verity the effectiveness of the test method developed and get the tensile properties. The specimens are 0.5 rum wide, $1{\mu}m$ thick and fabricated through MEMS processes including sputtering. 1 to 5 specimens are fabricated on Si dies. The membrane deflection experiments are carried out by using a homemade tester consisted of a motor-driven loading tip, a load cell, and 6 DOF alignment stages. The test system is compact enough to set it up beneath a commercial white light interferometric microscope. The white light fringes are utilized to align a specimen with the tester. The Young's modulus and yield point stress of the aluminium film are 62 GPa and 247 MPa, respectively.

Effect of shield gas on weld quality in narrow gap TIG welding of alloy 617 (Alloy 617 내로갭 TIG용접에서 실드가스가 용접품질에 미치는 영향)

  • Ham, Hyo-Sik;Kim, Nam-Gyu;Kim, Beom-Jun;Kim, Mun-Gi;Bae, Dong-Ho;Cho, Sang-Myung
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.66-66
    • /
    • 2010
  • 국내 화력발전의 $CO_2$배출량을 크게 줄이고, 친환경, 그린 화력발전시스템을 위한 가장 효과적인 수단은 발전효율을 획기적으로 증대시키는 것이기 때문에 이를 목표로 한 기술개발은 경제적으로나 산업적으로 파급효과가 매우 크다. 발전효율 증대를 위한 핵심기술은 증기터빈의 성능향상이다. 현재 일본, 미국, EU 등 각국이 가장 관심을 가지고 기술개발에 심혈을 쏟고 있는 초내열, 내식 합금소재는 $700^{\circ}C$이상에서 기계적 성능을 보장할 수 있는 Ni기 합금개발이고, 현재까지 상당한 기술수준에 이르고 있는 것으로 파악되고 있다. 국내의 경우는 관련기술개발을 위해 연구가 진행되고 있으나, 기술적으로 아직 미흡한 수준이다. Ni기 초내열, 내식합금을 개발해서 그것을 화력발전용 증기터빈 부품, 특히 초내열합금 용접형 터빈로터 소재로 이용하기 위해서는 체계적이고 실용적인 연구를 통하여 용접형로타의 내구성과 신뢰성이 보장되는 최적 수준의 접합기술 개발이 선행되어야 한다. 따라서 본 연구는 선행연구로 $700^{\circ}C$이상 초내열/내식 Ni기 합금소재의 용접기술 개발을 위한 후보 소재 Alloy 617의 동종재료 용접 기술 개발을 목표로 한다. 본 연구는 Alloy617 12.6t 맞대기 이음으로 U그루브 내로갭 TIG용접을 하였다. 1pass 1layer 방식으로 총 8pass 8layer로 용접하였다. 전류 및 용접속도는 동일하게 두고 실드가스를 Ar 또는 Ar-$H_2$ 가스로 변경하여 시험하였다. Ar가스 TIG용접은 비드표면에 산화스케일이 생기고, 비드면이 거칠며 전체적으로 산화되었다. 반면에 Ar-$H_2$가스 TIG용접은 비드표면에 산화스케일이 없으며 표면이 미려하고 산화되지 않았다. 실드가스에 수소가스 첨가시 환원성가스로 역할을 하게 되고 이에 따라 용융지 표면에 산화피막을 제거하여 용접비드를 청정하게 하는 효과를 가진다.

  • PDF

The Devices for Improvement against the Precedents about unfair Transactions in the Security Industries (경비업계에 있어서의 불공정거래의 사례 개선방안)

  • Kim, Tae-Wan
    • Korean Security Journal
    • /
    • no.11
    • /
    • pp.37-60
    • /
    • 2006
  • The area of security service has been maintaining the high growth curve annually by improving security consciousness from increase of the income and the progress of public services's level by the accomplishment in the info-communication field, recently the demand for unmanned security system is extended form commercial purposes into public offices and individual's houses. In addition to, the possible distance of offering services is scheduled to magnify. At the period when security company's influence has been becoming significant, the injustice transaction is the serious factor which obstructs the development of security companies. Therefore, it is urgent thing to devise counterplans to extirpate injustice transactions. There are the legalistic approaches of the breakthroughs against injustice transactions. One thing is settling the standard of the judgment and the other is renovating the provision of injustice transactions. Utilizing the principles of the fair competitions and importing self-obedience programs within the range of trade actions which is permitted by law, acted as the system approach. Moreover, there are such three things which can achieve mutual balances as establishing the range of the permitted action toward business corporations, applying spontaneously the fair competition principles and introducing the system of standard agreements. Gong further, this can establish order of security service areas and control them. Besides, it is possible for every organizations to make and operate the system appropriately by importing the self-observance system.

  • PDF

과학기술위성 3호 주탑재체 MIRIS 개발 현황

  • Han, Won-Yong;Lee, Dae-Hui;Park, Yeong-Sik;Jeong, Ung-Seop;Lee, Chang-Hui;Mun, Bong-Gon;Park, Seong-Jun;Cha, Sang-Mok;Pyo, Jeong-Hyeon;Ga, Neung-Hyeon;Lee, Deok-Haeng;Park, Jang-Hyeon;Seon, Gwang-Il;Nam, Uk-Won;Yang, Sun-Cheol;Lee, Seung-U;Park, Jong-O;Lee, Hyeong-Mok;Toshio, Matsumoto
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.55.2-55.2
    • /
    • 2010
  • 한국천문연구원은 과학기술위성 3호의 주탑재체인 다목적 적외선영상시스템(Multipurpose Infra-Red Imaging System, MIRIS)을 개발하고 있다. 이 연구개발 사업은 2007년 교육과학기술부의 과학위성 3호 사업 주탑재체 공모를 통하여 10여개의 후보 탑재체 제안서 중에서 최종적으로 채택되었고, 2011년 발사를 목표로, 3년 동안의 연구개발 기간을 거쳐 현재 비행모델 (FM, Flight Model) 개발이 진행 중이다. MIRIS는 한국천문연구원이 개발하여 2003년 발사에 성공한 과학위성 1호 주탑재체인 원자외선 영상분광기 (FIMS, Far ultra-violet IMaging Spectroscope)에 이어 국내에서 자체 개발되는 두 번째 우주망원경이다. MIRIS는 우주공간에서 0.9~2 micron 사이 적외선 영역의 파쉔 알파 방출선 (Paschen Alpha Emiision Line)과 광대역 I, H 파장영역을 관측할 예정이다. 주요 과학임무로는 아직까지 국제 천문학계에서 잘 알려지지 않은 우리은하 내부에 분포한 고온 플라즈마 (Warm Ionized Medium, WIM)의 기원 연구와 아울러 우리은하 성간난류(Interstellar Turbulence)의 특성 및 적외선 우주배경복사의 (Cosmic Infrared Background; CIB) 거대구조 등을 관측연구할 예정이다. 특히 MIRIS는 저온상태 (절대온도 77K, 약 $-200^{\circ}C$)에서 우주공간 관측을 수행할 예정이므로, 국내에서는 연구기반이 취약한 극저온 광학계 및 기계부 설계기술, 극저온 냉각기술 및 열해석 설계기술과 적외선 센서기술 및 자료처리 기술 등 관련기술을 개발하고 있으며 이러한 기반기술을 바탕으로, 아직까지 국내에서 시도된 바 없는 적외선우주망원경 개발을 통하여, 우리나라의 관련 우주기술 분야의 기초원천 기술로서 크게 활용될 것으로 기대하고 있다.

  • PDF

Traffic Sign Recognition using SVM and Decision Tree for Poor Driving Environment (SVM과 의사결정트리를 이용한 열악한 환경에서의 교통표지판 인식 알고리즘)

  • Jo, Young-Bae;Na, Won-Seob;Eom, Sung-Je;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.485-494
    • /
    • 2014
  • Traffic Sign Recognition(TSR) is an important element in an Advanced Driver Assistance System(ADAS). However, many studies related to TSR approaches only in normal daytime environment because a sign's unique color doesn't appear in poor environment such as night time, snow, rain or fog. In this paper, we propose a new TSR algorithm based on machine learning for daytime as well as poor environment. In poor environment, traditional methods which use RGB color region doesn't show good performance. So we extracted sign characteristics using HoG extraction, and detected signs using a Support Vector Machine(SVM). The detected sign is recognized by a decision tree based on 25 reference points in a Normalized RGB system. The detection rate of the proposed system is 96.4% and the recognition rate is 94% when applied in poor environment. The testing was performed on an Intel i5 processor at 3.4 GHz using Full HD resolution images. As a result, the proposed algorithm shows that machine learning based detection and recognition methods can efficiently be used for TSR algorithm even in poor driving environment.

Current Status of Nanotechnology Development for Space Exploration (우주탐사용 나노기술 개발 동향)

  • Lee, Ho-Sung;Chae, Yeon-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 2008
  • Nanotechnology(NT) refers to a field of advanced micro-technology covering the creation and manufacturing of materials on the atomic and molecular scale and requires interdisciplinary study with various fields including materials science, physics, chemistry, electronics and others. Whileas nanotechnology is a kind of micro and small scaled science, space technology(ST) is one of the larger and system technologies utilizing broad fields of mechanical, materials, electronics and communication technologies. It is necessary to select and concentrate the functional items of nanotechnology for efficient application to be utilized in space technology, due to the cross-sectional characteristics of nanotechnology within nanomaterials, nanoelectronics, and nanomanufacturing. This paper provides the current state of art of nanotechnology in space technology by evaluating NASA's activities and the 9th frame of the project ANTARES(Analysis of Nanotechnology Applications in Space Developments and Systems) with the support of the German Aerospace Center (DLR), Space Flight Management, Division Technology for Space Systems and Robotics. It has shown that it is necessary to apply nanotechnology to space technology in order to achieve international competitiveness, for the nanotechnology can bring the previously impossible things to reality. Since KARI plans to send an unmanned probe to the moon's orbit and land a probe on the moon's surface in 2025, it is urgently needed to incorporate nanotechnology to national space development plan.

  • PDF