• 제목/요약/키워드: 기계번역 품질 예측

검색결과 8건 처리시간 0.023초

단어 수준 한국어-영어 기계번역 품질 예측 (Word-level Korean-English Quality Estimation)

  • 어수경;박찬준;서재형;문현석;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-15
    • /
    • 2021
  • 기계번역 품질 예측 (Quality Estimation, QE)은 정답 문장에 대한 참조없이 소스 문장과 기계번역 결과를 통해 기계번역 결과에 대한 품질을 수준별 주석으로 나타내주는 태스크이며, 다양한 활용도가 있다는 점에서 꾸준히 연구가 수행되고 있다. 그러나 QE 모델 학습을 위한 데이터 구성 시 기계번역 결과에 대해 번역 전문가가 교정한 문장이 필요한데, 이를 제작하는 과정에서 상당한 인건비와 시간 비용이 발생하는 한계가 있다. 본 논문에서는 번역 전문가 없이 병렬 또는 단일 말뭉치와 기계번역기만을 활용하여 자동화된 방식으로 한국어-영어 합성 QE 데이터를 구축하며, 최초로 단어 수준의 한국어-영어 기계번역 결과 품질 예측 모델을 제작하였다. QE 모델 제작 시에는 Cross-lingual language model (XLM), XLM-RoBERTa (XLM-R), multilingual BART (mBART)와 같은 다언어모델들을 활용하여 비교 실험을 수행했다. 또한 기계번역 결과에 대한 품질 예측의 객관성을 검증하고자 구글, 아마존, 마이크로소프트, 시스트란의 번역기를 활용하여 모델 평가를 진행했다. 실험 결과 XLM-R을 활용하여 미세조정학습한 QE 모델이 가장 좋은 성능을 보였으며, 품질 예측의 객관성을 확보함으로써 QE의 다양한 장점들을 한국어-영어 기계번역에서도 활용할 수 있도록 했다.

  • PDF

번역 품질 예측을 위한 HTER 분포 평준화 기반 인조 번역 품질 말뭉치 구축 방법 (Construction of an Artificial Training Corpus for The Quality Estimation Task based on HTER Distribution Equalization)

  • 박준수;이원기;신재훈;한효정;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.460-464
    • /
    • 2019
  • 번역 품질 예측은 기계번역 시스템이 생성한 번역문의 품질을 정답 번역문을 참고하지 않고 예측하는 과정으로, 번역문의 사후 교정을 위한 번역 오류 검출의 역할을 담당하는 중요한 연구이다. 본 논문은 문장 수준의 번역 품질 예측 문제를 HTER 구간의 분류 문제로 간주하여, 번역 품질 말뭉치의 HTER 분포 불균형으로 인한 성능 제약을 완화하기 위해 인조 사후 교정 말뭉치를 이용하는 방법을 제안하였다. 결과적으로 HTER 분포를 균등하게 조정한 학습 말뭉치가 그렇지 않은 쪽에 비해 번역 품질 예측에 더 효과적인 것을 보였다.

  • PDF

최신 기계번역 품질 예측 연구 (Research on Recent Quality Estimation)

  • 어수경;박찬준;문현석;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.37-44
    • /
    • 2021
  • 기계번역 품질 예측(Quality Estimation, QE)은 정답 문장(Reference sentence) 없이도 기계번역 결과의 질을 평가할 수 있으며, 활용도가 높다는 점에서 그 필요성이 대두되고 있다. Conference on machine translation(WMT)에서 매년 이와 관련한 shared task가 열리고 있고 최근에는 대용량 데이터 기반 Pretrained language model(PLM)을 적용한 연구들이 주로 진행되고 있다. 본 논문에서는 기계번역 품질 예측 task에 대한 설명 및 연구 동향에 대한 전반적인 survey를 진행했고, 최근 자주 활용되는 PLM의 특징들에 대해 정리하였다. 더불어 아직 활용된 바가 없는 multilingual BART 모델을 이용하여 기존 연구들인 XLM, multilingual BERT, XLM-RoBERTa와 의 비교 실험 및 분석을 진행하였다. 실험 결과 어떤 사전 학습된 다중언어 모델이 QE에 적용했을 때 가장 효과적인지 확인하였을 뿐 아니라 multilingual BART 모델의 QE 태스크 적용 가능성을 확인했다.

KoCED: 윤리 및 사회적 문제를 초래하는 기계번역 오류 탐지를 위한 학습 데이터셋 (KoCED: English-Korean Critical Error Detection Dataset)

  • 어수경;최수원;구선민;정다현;박찬준;서재형;문현석;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.225-231
    • /
    • 2022
  • 최근 기계번역 분야는 괄목할만한 발전을 보였으나, 번역 결과의 오류가 불완전한 의미의 왜곡으로 이어지면서 사용자로 하여금 불편한 반응을 야기하거나 사회적 파장을 초래하는 경우가 존재한다. 특히나 오역에 의해 변질된 의미로 인한 경제적 손실 및 위법 가능성, 안전에 대한 잘못된 정보 제공의 위험, 종교나 인종 또는 성차별적 발언에 의한 파장은 실생활과 문제가 직결된다. 이러한 문제를 완화하기 위해, 기계번역 품질 예측 분야에서는 치명적 오류 감지(Critical Error Detection, CED)에 대한 연구가 이루어지고 있다. 그러나 한국어에 관련해서는 연구가 존재하지 않으며, 관련 데이터셋 또한 공개된 바가 없다. AI 기술 수준이 높아지면서 다양한 사회, 윤리적 요소들을 고려하는 것은 필수이며, 한국어에서도 왜곡된 번역의 무분별한 증식을 낮출 수 있도록 CED 기술이 반드시 도입되어야 한다. 이에 본 논문에서는 영어-한국어 기계번역 분야에서의 치명적 오류를 감지하는 KoCED(English-Korean Critical Error Detection) 데이터셋을 구축 및 공개하고자 한다. 또한 구축한 KoCED 데이터셋에 대한 면밀한 통계 분석 및 다국어 언어모델을 활용한 데이터셋의 타당성 실험을 수행함으로써 제안하는 데이터셋의 효용성을 면밀하게 검증한다.

  • PDF

극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템 (Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments)

  • 김경식;황명진;이승필
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

영한 기계번역에서 구문 분석 정확성 향상을 위한 구문 범주 예측 (Syntactic Category Prediction for Improving Parsing Accuracy in English-Korean Machine Translation)

  • 김성동
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.345-352
    • /
    • 2006
  • 실용적인 영한 기계번역 시스템은 긴 문장을 빠르고 정확하게 번역할 수 있어야 한다. 보다 빠른 번역을 위해 문장 분할을 이용한 부분 파싱 방법이 제안되어 속도 향상에 기여하였다. 본 논문에서는 보다 정확한 분석을 위해 결정 트리를 이용한 구문 범주 예측 방법을 제안한다. 문장 분할을 적용한 영어 분석에서 각각의 분할된 부분은 개별적으로 분석되며 각 분석 결과들이 결합되어 문장의 구조가 생성된다. 여기서 각 분할의 구문 범주를 미리 예측하여 부분 파싱 후에 보다 정확한 분석 결과를 선정하고 예측된 구문 범주에 근거하여 올바르게 다른 문장의 분할결과와 결합함으로써 문장 분석의 정확도를 향상시키는 것이 본 논문에서 제안한 방법의 목적이다. 본 논문에서는 Wall Street Journal의 파싱된 말뭉치에서 구문 범주 예측에 필요한 특성을 추출하고 결정 트리를 이용하여 구문 범주 예측을 위한 결정 트리를 생성하였다. 실험에서는 사람이 구축한 규칙을 이용한 방법, trigram 확률을 이용한 방법, 신경망을 이용한 방법 등에 의한 구문 범주 예측 성능을 측정, 비교하였으며 제안된 구문 범주 예측이 번역의 품질 향상에 기여한 정도를 제시하였다.

극한 언어 환경에 대응 가능한 영한 자동 주소번역 시스템 (Automatic English-Korean Address Translation System for Extremely Unpredictable Error Generating Language Environments)

  • 김경식;황명진;이승필
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.239-242
    • /
    • 2016
  • 데이터베이스 기반 자동 주소번역은 입력 오류에 취약하며 범용 기계번역을 이용한 주소번역은 입력 및 번역 주소에 대한 품질 평가가 어렵다. 본 논문에서는 예측할 수 없는 입력 오류에도 대응할 수 있는 자동 주소번역 시스템을 제안한다. 제안 시스템은 n-gram 기반 검색, 미검색/오검색 분류, 번역, 신뢰도 자동평가로 구성된다. 신뢰할 수 있는 입력으로 자동 분류한 영문 국내주소를 국문으로 번역한 결과 95%이상의 정확도를 보였다.

  • PDF

Zero-Shot 기반 기계번역 품질 예측 연구 (Study on Zero-shot based Quality Estimation)

  • 어수경;박찬준;서재형;문현석;임희석
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.35-43
    • /
    • 2021
  • 최근 다언어모델(Cross-lingual language model)을 활용하여 한 번도 보지 못한 특정 언어의 하위 태스크를 수행하는 제로샷 교차언어 전이(Zero-shot cross-lingual transfer)에 대한 관심이 증가하고 있다. 본 논문은 기계번역 품질 예측(Quality Estimation, QE)을 학습하기 위한 데이터 구축적 측면에서의 한계점을 지적하고, 데이터를 구축하기 어려운 상황에서도 QE를 수행할 수 있도록 제로샷 교차언어 전이를 수행한다. QE에서 제로샷을 다룬 연구는 드물며, 본 논문에서는 교차언어모델을 활용하여 영어-독일어 QE 데이터에 대해 미세조정을 실시한 후 다른 언어쌍으로의 제로샷 전이를 진행했고 이 과정에서 다양한 다언어모델을 활용하여 비교 연구를 수행했다. 또한 다양한 자원 크기로 구성된 언어쌍에 대해 제로샷 실험을 진행하고 실험 결과에 대해 언어별 언어학적 특성 관점으로의 분석을 수행하였다. 실험결과 multilingual BART와 multillingual BERT에서 가장 높은 성능을 보였으며, 특정 언어쌍에 대해 QE 학습을 전혀 진행하지 않은 상황에서도 QE를 수행할 수 있도록 유도하였다.