• 제목/요약/키워드: 기계번역 사후교정

검색결과 6건 처리시간 0.019초

도메인 특화 기계번역 사후교정 모델 검증 연구 (Verification of the Domain Specialized Automatic Post Editing Model)

  • 문현석;박찬준;서재형;어수경;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2021
  • 인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.

  • PDF

최신 기계번역 사후 교정 연구 (Recent Automatic Post Editing Research)

  • 문현석;박찬준;어수경;서재형;임희석
    • 디지털융복합연구
    • /
    • 제19권7호
    • /
    • pp.199-208
    • /
    • 2021
  • 기계번역 사후교정이란, 기계번역 문장에 포함된 오류를 자동으로 교정하기 위해 제안된 연구 분야이다. 이는 번역 시스템과 관계없이 번역문의 품질을 높이는 오류 교정 모델을 생성하는 목적을 가진 연구로, 훈련을 위해 소스문장, 번역문, 그리고 이를 사람이 직접 교정한 문장이 활용된다. 특히, 최신 기계번역 사후교정 연구에서는 사후교정 데이터를 통한 학습을 진행하기 이전에, 사전학습된 다국어 언어모델을 활용하는 방법이 적용되고 있다. 이에 본 논문은 최신 연구들에서 활용되고 있는 다국어 사전학습 언어모델들과 함께, 해당 모델을 도입한 각 연구에서의 구체적인 적용방법을 소개한다. 나아가 이를 기반으로, 번역 모델과 mBART모델을 활용하는 향후 연구 방향을 제안한다.

기계번역 사후교정(Automatic Post Editing) 연구 (Automatic Post Editing Research)

  • 박찬준;임희석
    • 한국융합학회논문지
    • /
    • 제11권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 기계번역이란 소스문장(Source Sentence)을 타겟문장(Target Sentence)으로 컴퓨터가 번역하는 시스템을 의미한다. 기계번역에는 다양한 하위분야가 존재하며 APE(Automatic Post Editing)이란 기계번역 시스템의 결과물을 교정하여 더 나은 번역문을 만들어내는 기계번역의 하위분야이다. 즉 기계번역 시스템이 생성한 번역문에 포함되어 있는 오류를 수정하여 교정문을 만드는 과정을 의미한다. 기계번역 모델을 변경하는 것이 아닌 기계번역 시스템의 결과 문장을 교정하여 번역품질을 높이는 연구분야이다. 2015년부터 WMT 공동 캠페인 과제로 선정되었으며 성능 평가는 TER(Translation Error Rate)을 이용한다. 이로 인해 최근 APE에 모델에 대한 다양한 연구들이 발표되고 있으며 이에 본 논문은 APE 분야의 최신 동향에 대해서 다루게 된다.

전이학습 기반 기계번역 사후교정 모델 검증 (The Verification of the Transfer Learning-based Automatic Post Editing Model)

  • 문현석;박찬준;어수경;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.

번역 품질 예측을 위한 HTER 분포 평준화 기반 인조 번역 품질 말뭉치 구축 방법 (Construction of an Artificial Training Corpus for The Quality Estimation Task based on HTER Distribution Equalization)

  • 박준수;이원기;신재훈;한효정;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.460-464
    • /
    • 2019
  • 번역 품질 예측은 기계번역 시스템이 생성한 번역문의 품질을 정답 번역문을 참고하지 않고 예측하는 과정으로, 번역문의 사후 교정을 위한 번역 오류 검출의 역할을 담당하는 중요한 연구이다. 본 논문은 문장 수준의 번역 품질 예측 문제를 HTER 구간의 분류 문제로 간주하여, 번역 품질 말뭉치의 HTER 분포 불균형으로 인한 성능 제약을 완화하기 위해 인조 사후 교정 말뭉치를 이용하는 방법을 제안하였다. 결과적으로 HTER 분포를 균등하게 조정한 학습 말뭉치가 그렇지 않은 쪽에 비해 번역 품질 예측에 더 효과적인 것을 보였다.

  • PDF

양방향 RNN과 학술용어사전을 이용한 영문학술문서 교정 방법론 (Methodology of Automatic Editing for Academic Writing Using Bidirectional RNN and Academic Dictionary)

  • 노영훈;장태우;원종운
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.175-192
    • /
    • 2022
  • 자연어 처리 기술을 접목한 컴퓨터 보조 언어 학습 연구가 진행되고 있지만, 기존 영문교정은 일반적인 영어 문장을 기반으로 연구되어, 격식을 갖춘 문체와 전문적인 기술 용어를 사용하는 학술 영문의 경우 그 특성을 반영하지 못한 교정 결과를 제공한다. 또한 문장의 문법적 완성도 향상을 위한 다수의 기존 연구는 교정을 통한 문장 전달력 향상의 한계점이 존재한다. 따라서, 본 논문은 전문적인 기술 용어 사용을 기반으로 문장의 명확한 의미 전달을 목적으로 하는 학술 영문을 위한 자동 교정 방법론을 제안한다. 제안 방법론은 오탈자 교정과 문장 전달력 개선 두 단계로 구성된다. 오탈자 교정 단계는 입력된 오탈자와 문맥에 적합한 교정 단어를 제공한다. 문장 전달력 개선 단계는 원문과 교정문의 쌍으로부터 학습할 수 있는 양방향 순환신경망 기계번역 사후교정 모델을 기반으로 문장의 전달력을 개선한다. 실제 교정 데이터를 이용한 실험을 수행하였으며, 정량적·정성적 분석을 통해 제안 방법론의 우수성을 검증하였다.