• 제목/요약/키워드: 기계고장

검색결과 564건 처리시간 0.025초

기계 설비 고장진단

  • 최연선
    • 기계저널
    • /
    • 제44권9호
    • /
    • pp.53-61
    • /
    • 2004
  • 산업현장에서 기계 및 설비에 발생되는 고장은 일상적인 것이 될 수 있으나, 고장발생은 생산에 차질을 가져오고, 경우에 따라서는 산업재해로 연결 될 수 있다. 따라서 발전소, 석유화학 플랜트, 제철소 등 대형 산업현장의 주요 기계 및 설비에 대해서는 운전 상태를 지속적으로 감시(condition monitoring) 하여야 하고, 고장발생 시 고장을 진단하여 원인을 밝히고, 이를 바탕으로 확실한 대처방안을 마련하여야 한다.(중략)

  • PDF

철강회사에서 기계 고장 진단 사례연구 (A Case Study of the Breakdown Evaluation to the Machine at the Steel Company)

  • 홍태용;박수홍
    • 한국전자통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.195-202
    • /
    • 2015
  • 회전기계에서는 예후 신호 없이 고장되는 경우는 거의 없으며, 따라서 설비고장은 신호를 감시함으로서 고장을 예측, 회피할 수 있다. 본 연구에서는 회전기계에서 발생할 수 있는 고장에 대한 안전진단에 대한 사례연구이다. 각각의 회전기계에 대하여 진동분석을 통한 고장발생유무를 각종의 측정 데이터를 이용하여 분석하여 향후에 발생할 수 있는 고장에 대한 안전진단에 대한 방법을 연구하였다. 결과에서 보는 바와 같이 제안된 측정방법으로 안정한 상태 감시 및 진단 결과를 보여준다.

소음·진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템 (Deep-Learning based PHM Embedded System Using Noise·Vibration)

  • 이세훈;신보배;김예지;김지성
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.9-10
    • /
    • 2017
  • 본 논문에서 소음, 진동을 이용한 딥러닝 기반 기계 고장진단 임베디드 시스템을 제안하였다. 제안된 시스템은 기계로부터 취득된 소리와 진동을 바탕으로 학습한 DNN모델을 통해 실시간으로 기계 고장을 진단한다. 딥러닝 기술을 사용하여 학습에 따라 적용대상이 변경될 수 있도록 함으로써 특정 기계에 종속적이지 않고 가변적으로 다양한 기계에 대해 고장 예지 및 건전성 관리를 제공하도록 설계하였으며, 이를 증명하기 위해 액추에이터를 환풍기로 설정하여 정상상태와 4가지 비정상상태의 5가지상태를 학습하여 실험한 결과 93%의 정확도를 얻었다.

  • PDF

전자제품의 고장 메커니즘

  • 김진우
    • 기계저널
    • /
    • 제43권6호
    • /
    • pp.55-57
    • /
    • 2003
  • 이 글에서는 전자제품의 고장 메커니즘의 개념에 대하여 설명하고, 고장 발생 유형에 다른 분류에 대해 설명한다.

  • PDF

국내외 고장진단분야 연구 동향 및 분석

  • 이진우;전휘수;권대일
    • 기계저널
    • /
    • 제56권11호
    • /
    • pp.37-40
    • /
    • 2016
  • 제품 및 시스템의 안정적인 운용과 높은 신뢰성 확보를 위해 건전성 관리가 요구된다. 최근 기술의 발전과 함께 실용적인 고장 진단기술이 주목을 받으며, 고장 진단을 통한 건전성 관리 연구가 다양한 분야에서 활발히 진행되고 있다. 이 글에서는 고장 진단 관련 연구 동향 분석 및 고장 진단 기술 적용 사례들을 소개하고자 한다.

  • PDF

분산 시스템에서 고장 감내성의 향상을 위한 적응형 체크포인팅 프로토콜 (Adaptive Checkpointing Protocol for Improving of Fault Tolerance in Distributed System)

  • 이용호;장태무
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (3)
    • /
    • pp.90-92
    • /
    • 1999
  • 비동기 체크포인팅 프로토콜은 분산 시스템에서 고장 감내성을 제공하기 위한 방법중 하나다. 이 방법은 모든 프로세스가 독립적으로 자신의 지역 체크포인트를 두고 어느 한 프로세스에서의 고장 발생시 가장 최근의 체크포인트에서부터 롤백을 하는 것이다. 하지만 이 방법은 어느 한 프로세스에서의 고장 발생이 다른 프로세스의 롤백까지 유도하는 캐스캐이드 롤백을 발생시킬 수 있는 단점이 있다. 본 논문에서는 고장 감내성의 수준을 높이기 위하여 비동기 체크포인팅 프로토콜을 사용하면서도 캐스캐이드 롤백을 막을 수 있는 적응형 체크포인팅 프로토콜을 사용한다. 프로세스사이에 오고가는 모든 메시지의 복사본이 서버쪽의 중재자를 통하여 서버에 있는 기계 상태 테이블에 저장된다. 이렇게 하여 서버에는 무든 지역 기계의 상태가 저장되어 기계 고장이 발생했을 경우에 고장이 발생한 기계의 복구에 사용된다.

  • PDF

공작기계 주축용 베어링 결함검출 (The Detection of Main Spindle Bearing Defect for Machine Tool)

  • 오석영;정의식;임영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.351-356
    • /
    • 1993
  • 최근의 프로세스 공업화에 있어서 생산Line의 장치나 기계류는 점차 대형화, 고속화,연속화,복잡화되고 있다. 또한, 기계가공공업,자동차공업,기계,전자부품의 가공조립등의 생산설비는 각설비가 고도로 자동화되고 있는 실정으로 공장 전체의 유기체적인 제어 및 감독을 필요로 하고 있다. 마찬가지로 기계부품제작산업도 CNC.FMS등으로 점차 조작화,자동화됨에 따라 공작기계 장치나 기계류등의 이상이나 고장으로 생산 및 품질에 미치는 영향도 종래와 비교할 수 없을 정도로 중요시 되고 있는 실정이다, 이와같이 설비의 안전성을 도모하고 고신뢰도를 부여하기위해서는 기계설비의 이상 및 고장진단이 필수적이며, 공장 자동화와 함께 공작기계자체의 고장 및 이상진단을 실시하고, 검출된 신호의 크기등으로 고장상태를 판정해야만 한다. 공작기계에서 동적인 회전시스템을 이루는 주축용베어링의 손상은 제작하고자 하는 제품의 정밀도 표면거칠기등의 저하 뿐만아니라 시스템 전체의 기능까지도 떨어뜨리는 요인이 될수 있으므로 베어링 상태를 진단하여 송상유무를 판단하는것은 필수적이라 생각된다.

  • PDF

빅 데이터 분석을 통한 가설기기의 고장예측시스템 (A Study on the Prediction System of Construction Machinery Failure using Big Data)

  • 윤다영;박윤수;이현화;이상문
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.153-154
    • /
    • 2013
  • 토목 및 건설, 건축 등의 현장에서 많이 사용되는 가설기기들은 기계의 자체적인 기계고장 뿐만 아니라 야외 현장의 환경에 따른 기후의 변화에도 고장이 발생할 수 있다. 이러한 고장들을 사후약방문의 형식으로 고장이 발생하는 경우에만 수리 후 사용한다면 시간적/경제적으로 많은 손실이 있을 것이다. 그러나 가설기기들의 종류별 기기적 특징을 미리 시스템화하여 발생할 수 있는 고장을 사전에 방지하고 예방한다면 불필요한 손실을 미연에 막을 수 있다. 따라서 본 논문에서는 가설기기들과 관련된 각종 빅 데이터를 이용하여 피로도를 예측하여 고장이 발생하기 전에 사전에 예방할 수 있는 시스템을 제안한다.

  • PDF

최근의 용접용 고장력 강재의 기술동향

  • 김영식
    • 기계저널
    • /
    • 제27권2호
    • /
    • pp.124-131
    • /
    • 1987
  • 고장력 강재의 요구특성은 고강도, 고인성, 고내식성 외에 양호한 용접성 등으로 요약될 수 있다. 이러한 특성은 서로 상반된 특성으로서 고강도에 치중하다 보면 인성과 용접성이 저하하는 경향이 나타난다. 특히 고장력 강재를 이용하여 구조물 조립시는 용접공법이 이용되는데 이러한 용접시 열사이클로 인해 고장력 강재의 기계적 특성의 열화현상이 수반되며 이러한 현상은 고강고 강재일수록 현저하게 된다. 따라서 이와 같은 서로 상반된 요구특성을 어떻게 개선하느냐 하는 것이 고장력 강재 개발에 있어 가장 중요한 요건이라 할 수 있다. 이러한 목적을 달성하기 위해 현재로서는 탄소당량을 낮게 유지하고 결정립 미세화를 위한 각종 원소의 첨가처리, 고순도 강재 제조기술 및 각종 조질 열처리 기술이 개발되어 있으며 최근에 이르러 TMCP(thrmo-mechanical controlled process)방법이 개발되어 고장력 강재의 기계적 특성향상에 큰 발전을 가져오게 되었다.

  • PDF

회전수가 변하는 기기의 상태 진단에 있어서 특성 기반 분류 알고리즘과 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Classification and Convolution algorithm in Condition assessment of the Failure Modes in Rotational equipments with varying speed)

  • 문기영;황세윤;이장현
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.301-301
    • /
    • 2022
  • 본 연구는 운영 조건이 달라짐에 따라 회전수가 변하는 기기의 정상적 가동 여부와 고장 종류를 판별하기 위한 인공지능 알고리즘의 적용을 다루고 있다. 회전수가 변하는 장비로부터 계측된 상태 모니터링 센서의 신호는 비정상(non-stationary)적 특성이 있으므로, 상태 신호의 한계치가 고장 판별의 기준이 되기 어렵다는 점을 해결하고자 하였다. 정상 가동 여부는 이상 감지에 효율적인 오토인코더 및 기계학습 알고리즘을 적용하였으며, 고장 종류 판별에는 기계학습법과 합성곱 기반의 심층학습 방법을 적용하였다. 변하는 회전수와 연계된 주파수의 비정상적 시계열도 적절한 고장 특징 (Feature)로 대변될 수 있도록 시간 및 주파수 영역에서 특징 벡터를 구성할 수 있음을 예제로 설명하였다. 차원 축소 및 카이 제곱 기법을 적용하여 최적의 특징 벡터를 추출하여 기계학습의 분류 알고리즘이 비정상적 회전 신호를 가진 장비의 고장 예측에 활용될 수 있음을 보였다. 이 과정에서 k-NN(k-Nearest Neighbor), SVM(Support Vector Machine), Random Forest의 기계학습 알고리즘을 적용하였다. 또한 시계열 기반의 오토인코더 및 CNN (Convolution Neural Network) 적용하여 이상 감지와 고장진단을 수행한 결과를 비교하여 제시하였다.

  • PDF