• 제목/요약/키워드: 급변 수심

검색결과 25건 처리시간 0.023초

둔치에서의 홍수위험도 평가를 위한 2차원 흐름해석모형의 적용 (Application of Two-Dimensional Flow Analysis Model for Flood Risk Assessment in Flood Plain)

  • 구영훈;송창근;김영도
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.40-40
    • /
    • 2015
  • 최근 기후변화로 인해 홍수의 발생빈도와 홍수량이 증가하고 있으며, 여름철 집중호우 및 태풍에 의해 하천의 둔치가 침수됨으로써 다양한 침수피해를 야기한다. 대하천 사업 이후 하천의 둔치를 활용한 체육시설, 자전거도로 및 생태공원과 같은 친수시설들이 조성되었으며 태풍으로 인한 하천의 홍수위 상승은 이러한 친수시설에 대한 직접적인 피해를 가져올 수 있다. 따라서 이와 같은 침수피해를 예측하기 위해서는 둔치를 포함한 복단면에서의 흐름해석을 통한 수리학적 영향을 분석해야하며, 둔치에서의 흐름양상은 주수로에 비해 수심이 얕고 흐름에 대한 저항이 크기 때문에 2차원 수리해석이 바람직한 것으로 제안되고 있다. 2차원 수리해석에 있어 하천의 홍수위 상승과 하강으로 인해 발생하는 둔치구간에서의 마름과 젖음 현상은 수치해의 발산을 야기하며, 이러한 문제를 해결하기 위해 다양한 마름/젖음 해석 기법에 대한 연구들이 진행되어 왔으며 일반적으로 마름/젖음에 대한 문제를 해결하는 방법은 마름/젖음에 상관없이 모든 부분에서 방정식을 푸는 박막기법과 해석영역으로부터 마름 부분을 제거하는 이동경계법으로 나눌 수 있다. 본 연구에서는 단기간에 수위가 급변하는 태풍사상에 대한 둔치에서의 홍수위험도를 평가하기 위해 마름/젖음 해석이 가능한 2차원 유한차분모형인 Nays2D 모형을 이용하여 마름/젖음에 대한 과거 선행연구들의 결과와 적용된 모형의 결과를 비교하여 모형의 적용성을 검증하였고, 검증된 모형을 강정-고령보에서부터 달성보 사이 구간에 적용하여 수리학적 영향을 분석하였다. 또한, 모형의 결과를 이용하여 홍수위험지수를 산정하였으며, 이를 통해 둔치구간에서의 홍수위험도 평가를 실시하였다.

  • PDF

표면영상유속계를 이용한 홍수시 복단면 하천 유량 측정 연구 (Study of discharge measurement in compound open channel using LSPIV)

  • 이준형;김서준;이윤호;윤병만
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.23-23
    • /
    • 2021
  • 영상유속계는 영상을 이용한 비접촉식 유속계로 하천과 같은 넓은 범위의 유속 및 유량을 쉽고 간편하게 측정할 수 있다는 장점이 있어 최근 국내외에서 영상유속계의 실용화 연구가 다양하게 수행되고 있다. 특히 영상유속계는 별도의 고가의 장비 없이 카메라만을 이용하기 때문에 비교적 경제적이고 간편하며 비접촉식 유속 측정 방법이기 때문에 안전하게 홍수기 하천 유속 및 유량을 측정할 수 있다. 또한 넓은 범위의 유속을 순간적으로 측정할 수 있기 때문에 시간에 따라 수위가 급변하는 중규모 이하의 하천 유량을 측정하는데 적합하다. 하지만 영상유속계로 측정한 유속은 표면유속이기 때문에 하천 유량을 산정하기 위해서는 표면유속에 환산계수를 곱해 평균유속으로 환산하는 과정이 필요하다. 환산계수는 이전 연구에서 실험을 통해 0.84~0.90의 값을 갖는다고 하였고 일반적으로 0.85를 사용하지만, 하상, 수심 및 단면에서의 측정 위치에 따라 달라지므로 확실하게 결정하기 어렵다(Turnipseed and Sauer, 2010). 특히 국내의 많은 하천은 산책로를 포함한 복잡한 복단면으로 이루어져 있어 환산계수를 일률적으로 0.85로 사용하면 유량 측정 정확도가 낮아질 수 있다. 이에 본 연구에서는 서울시 탄천 대곡교에서 영상유속계를 이용하여 홍수기 유량 측정을 수행하여 흐름 특성에 따른 수위변화에 따라 적정 환산계수를 산정하였다. 탄천 대곡교 지점은 환경부의 자동유량계측 장비가 설치되어 있고 다년간의 검증된 유량 자료를 확보할 수 있기 때문에 환경부 유량측정 결과와 영상유속계로 산정한 유량을 비교하며 환산계수 변화를 분석하였다. 분석 결과 수위에 따라 환산계수는 0.7~1.3의 범위를 갖으며 둔치수위 이하에서는 0.85와 유사한 경향을 보였고, 둔치를 넘는 수위에서는 1 이상으로 환산계수가 증가하였다가 둔치가 완전히 잠기는 수위에서는 다시 0.85 정도로 변화하는 경향을 확인하였다. 향후 영상유속계를 이용한 다양한 홍수기 계측을 통해 복단면에서의 적정 환산계수 검토가 필요할 것으로 생각한다.

  • PDF

2005년 춘계 동해 중남부 해역의 수괴 분포 및 화학적 특성 연구 (Distribution of water Masses and Chemical Properties in the East Sea of korea in Spring 2005)

  • 김영숙;황재동;윤석현;윤상철;황운기;심정민;이용화;진현국
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제10권4호
    • /
    • pp.235-243
    • /
    • 2007
  • 동해중남부 해역의 수괴 분포특성을 구명하고자 2005년 4월 최대 약 2000 m까지 수심별 수온, 염분의 관측과 용존 무기영양염류의 농도 분포를 조사하였다. 수온과 염분의 분포에서 나타난 동해의 수괴는 고온 저염을 나타내는 표층과 일정한 수온분포를 보이는 표면혼합층, 그리고 저온저염을 나타내는 수온약층을 경계로 수층간의 환경의 현저한 차이를 나타내었다. 300 m 이심에서는 수온 $1^{\circ}C$ 미만, 염분은 34.06으로 동해고유수의 특성을 보였다. 울릉분지를 중심으로 동서를 연결한 해역에서의 용존무기영양염은 최저 농도 분포를 나타내는 표층 수괴를 포함한 표면혼합층과 $100{\sim}200$ m에서는 농도가 점차 증가하는 비교적 안정된 수괴의 상태로 나타났다. 그리고 200 m에서 급격히 농도가 증가하여 수온약층을 경계로 수층간의 뚜렷한 농도의 차이를 보였으며, 심해수층에서 높은 농도의 분포를 나타내었다. 동해남부에서 울릉 북동쪽을 연결하는 해역에서는 정점별 나타나는 수괴의 분포에 차이를 나타내었는데, 대마난류의 북상과 함께 표면혼합층의 두께와 농도의 급변화층(nutricline)이 감소하는 경향으로 나타났다. 이는 동해남부에서 울릉분지 북동쪽으로 대마난류가 북상하면서 그 세기가 점차 감소하였음을 시사한다. 해수중에서 생물에 의한 소비와 생산에 관여하는 화학성분의 조성비를 Redfield ratio(N:P=16:1)를 지표로서 수괴별로 구분하여 보면 상부 수온약층을 경계로 하여, 수심 100m 까지는 질소 부족으로 16보다 낮은 값을 나타내었고, $100{\sim}200$ m 이 심에서는 16이상으로 높게 나타나 생물에 의한 영양염의 재생산활동이 비교적 느리게 일어남을 알 수 있었으며, 이는 Chlorophyll a의 200 m 이심에서 보인 낮은 농도분포와도 일치하였다.

  • PDF

새만금호 내 밀도 성층 변화 고찰 (Consideration on Changes of Density Stratification in Saemangeum Reservoir)

  • 오찬성;최정훈
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권2호
    • /
    • pp.81-93
    • /
    • 2015
  • 2010년 11월부터 새만금 내부개발을 위한 단계적 관리수위 적용이 실시되었으며, 이에 따른 수온 및 염분 변화 등을 파악하고자 현장 수질 모니터링 보완에 대한 필요성이 대두되었다. 한국농어촌공사에서는 월 3~4회에 걸쳐 총 25개 지점에서 염분 및 수온 자료를 관측 분석하고 있다. 본 연구에서는 상기 자료를 활용하여 계절적 성층수괴 분포 특성을 연도별로 비교하였으며, 관측한 자료는 크리깅을 이용하여 그 분포 특성을 파악하였다. 이 때 수온 및 염분 자료를 통한 ${\sigma}_t$와 성층계수를 함께 계산하였으며, 여러 관측 지점 중 M4와 D4 지점을 선정하여 월별 수직적인 수온, 염분 및 ${\sigma}t$ 변화 양상을 분석하였다. 2011년 및 2012년의 수온-염분 모니터링 비교 결과, 수온은 두 기간 동안 수직적 성층 현상은 여름철에 일시적으로 발생하였으며, 수층 상 하 간의 온도차는 약 $2{\sim}3^{\circ}C$로 성층 강도는 크지 않은 것으로 판단된다. 염분 농도는 표층에서 저층으로 갈수록 염분 농도가 높아지며, 여름철 표층에서 낮은 염도를 보이는 동일한 경향을 갖는다. 하지만 전반적으로 2012년의 염분 농도가 2011년에 비해 높은 분포를 보이며, 수심 5 m 이내에서 농도가 급변하는 현상이 나타난다. 따라서 밀도 변화는 주로 풍수기 기간에 집중되는 현상이 나타나, 성층현상은 하구 지역의 여름철 상류유입량에 매우 민감하게 반응하는 것으로 나타난다.

확률빈도를 갖는 수문조건에서의 고유량 산정 - 설마천 유역을 중심으로 - (Calculation of high discharge under hydrological conditions with probability frequency - Focusing on the Seolmacheon catchment -)

  • 김동필
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.385-385
    • /
    • 2021
  • 하천에서 실제로 유속 2.0m/s 이상 발생할 시 유량측정은 매우 급변하는 유속과 수위변화에 따른 측정값의 불확실성, 운영적인 측면에서의 시·공간적 한계 등으로 고유량에 대해 정확한 유량을 산정하기 어려운 실정이다. 그리고 국가하천은 최소 80년 빈도 이상, 지방하천은 최소 50년 빈도 이상의 확률강우량 채택을 통해 고유량에 해당하는 계획홍수량을 산정하고 있으나, 실제로 높은 호우의 빈도는 쉽게 발생하지 않아 유량측정성과가 부재하거나 매우 극소수에 불과한 상황이다. 따라서 유량측정성과는 대상하천의 계획홍수량(계획홍수위) 이하의 수준, 즉 중규모 수위 이하의 구간에서 대부분의 성과를 가지고 있으므로 고유량 산정은 고수위 외삽추정식에 의존할 수밖에 없다. 고수위 외삽추정은 대체로 기 유량측정성과(h, q)와 통수단면적(AD1/2) 자료를 이용하는 Stevens 방법을 주로 이용하며, 이 방법은 하폭에 비해 수심이 비교적 작은, 얕은 하천과 기 유량측정성과가 추정하려는 고수위 구간에 근접한 경우에 적용성이 매우 용이하다고 할 수 있다. 설마천 유역 전적비교 수위관측소의 경우는 수위 4.110m까지 최대로 통수할 수 있으며, 하폭은 24.230m, 관측 최고수위는 3.194m, 유량측정성과 최대수위는 1.613m(40.303m3/s)이다. 설마천 유역에 대해 Stevens 방법을 적용하는 경우 위 조건을 만족하지 않으므로 다른 방법으로의 접근이 필요하다. AMC-III 조건의 선행강수량과 지속기간 1시간을 갖는 최대강우강도별 관측도달시간 자료를 통해 관계식을 유도하였으며, 강우 빈도해석의 결과인 지속기간 1시간의 빈도별 강우강도에 해당하는 도달시간을 유속으로 환산하는 과정을 거쳤다. 그 결과 유속은 1.808m/s(2년 빈도_43.3mm)~4.254m/s(500년 빈도_101.9mm)이며, 기 유량측정성과의 결과인 수위, 통수단면적, 유속, 유량, 최대강우강도(86.1mm_80년 빈도)가 발생했을 때의 해당 유속(도달시간 환산값), 수위, 통수단면적을 통해 최종적으로 빈도(년)별 유속, 수위, 유량을 결정하였다. 한국하천일람(2018)에서 제시된 설마천 전체 유역의 80년 빈도 계획홍수량(315m3/s, A=17.59km2) 값은 전적비교 수위관측소(A=8.48km2)와 직접적인 비교는 어렵지만, 유역면적비(0.482)를 적용한 추정된 계획홍수량은 약 152m3/s 볼 수 있다. 상기의 빈도별 유속, 수위, 통수단면적 결과인 80년 빈도(86.1mm)-유속(3.594m/s)-수위(3.194m)-통수단면적(53.197m2)에 해당하는 계산된 유량은 191.212m3/s로 분석되었다. 그리고 최대통수가 가능한 수위 4.110m의 계산된 유량은 313.674m3/s(약 424년 빈도 추정, 유속 4.203m/s, 통수단면적 74.761m2)로 결국에는 빈도(년)에 해당하는 수위-유량관계식(고수위 외삽추정식)을 통해 고유량을 산정할 수 있었다.

  • PDF