• Title/Summary/Keyword: 급랭 파쇄작용

Search Result 3, Processing Time 0.019 seconds

The Occurrence and Formation Mode of Basaltic Rocks in the Tertiary Janggi Basin, Janggi Area (제 3기 장기분지에 나타나는 현무암질암의 산상과 형성기구)

  • Kim, Choon-Sik;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2007
  • A basaltic tuff formation (Upper Basaltic Tuff of the Janggi Group) occurs in close association with basalt (Yeonil Basalt) at the Tertiary Janggi basin. The purpose of this paper is to describe the occurrence of the basaltic tuff and associated basalt and to determine their mode of formation. The basaltic rocks of the study area show few distinct lithofacies, all of which are originated from the interaction of basaltic magma with external water. The four lithofacies include (1) sideromelane shard hyaloclastite, (2) pillow breccia, (3) entablature-jointed basalt, and (4) in-situ breccia. The sideromelane shard hyaloclastite constitutes most of the Upper Basaltic Tuff and has a gradual contact with the pillow breccia. The pillow breccia consists of a poorly sorted mixture of isolated and broken pillows, and small basalt globules and fragments engulfed in a volcanic matrix of sideromelane shard hyaloclastite. The entablature-jointed basalt occurs as a small body within the hyaloclastite. It is characterized by irregularly-curved joints known as entablature. The in-situ breccia occurs as a marginal facies of entablature-jointed basalt, and its width varies from 10 to 30m. The result of this study indicates that the basaltic tuff and associated basalts of the study area were produced by the volcanic activity of same period and the basaltic tuff was formed by subaqueous eruption of basaltic lava followed by nonexplosive quench fragmentation.

Eruption Types and Textures of Pyroclastics from the Jugam Scoria Deposits, Ulleung Island, Korea (울릉도 죽암분석층에서 나온 화성쇄설물들의 조직과 분화유형)

  • Hwang, Sang Koo;Ahn, Ung San;Lee, So Jin;Oh, Kyung Sik
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.459-469
    • /
    • 2019
  • We present a quantitative evaluation of density, vesicularity and microtextures for coarse lapilli collected from the Jugam Scoria Deposits, northeastern Ulleung Island. Lapilli from the deposits have modal vesicularities of 61% in the lower part and 67% in the upper part, and vesicle populations dominated by non-interconnected subround vesicles. Clasts of modal vesicularity have margin-parallel zonation, with subaerially quenched rims interpreted to preserve "syn-fragmentation" magmatic textures in microlite-free sideromelane rims, grading "post-fragmentation" tachylitic interiors with vesicle and microlite textures that progressively coarsen from rim to interior. Degassing scenarios are linked to syn-fragmentation vesicle textures to demonstrate that the magmas degassed in dominantly closed systems. And diffusion-controlled cooling rates of trachyandesitic pyroclasts in contact with atmosphere are linked to post-fragmentation evolution of vesicle and microlite textures to infer about transportation and dispersal of the pyroclasts in low shooting jets. These textural analyses show that the Jugam eruptions were strictly applied to the strombolian type, analogous to the hawaiian type among any classical subaerial eruption type.

Occurrence and Genesis of Obsidian in Gombawi Welded Tuff, Ulleung Island, Korea (울릉도 곰바위용결응회암 내 흑요암의 산출특징과 성인)

  • Im, Ji Hyeon;Choo, Chang Oh
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.105-116
    • /
    • 2017
  • The purpose of this study is to provide the information on genesis of obsidian occurring in the southwestern part of Ulleung Island, Korea, and to discuss its implications for volcanic activity through volcanological and mineralogical properties of obsidian. Obsidian occurs locally at the lower part of the Gombawi welded tuff, showing various complex textures and flow banding. Though obsidian is mostly homogeneous, it is closely associated with alkali feldspar phenocrysts, reddish tuff, and greyish trachyte fragments. The obsidian occurs as wavy, lenticular blocks or lamination composed of fragments. Cooling fractures developed on obsidian glass are characterized by perlitic cracks, orbicular or spherical cracks, indicating that obsidian rapidly quenched to form an amorphous silica-rich phase. It is evident that hydration took place preferentially at the outer rim relative to the core of obsidian, forming alteration rinds. The glassy matrix of obsidian includes euhedral alkali feldspars, diopside, biotite, ilmenite, and iron oxides. Microlites in glassy obsidian are composed mainly of alkali feldspars and ilmenite. Quantitative analysis by EPMA on the obsidian glass part shows trachytic composition with high iron content of 3 wt.%. Accordingly, obsidian formed with complex textures under a rapid cooling condition on surface ground, with slight rheomorphism. Such results might be induced by collapse of lava dome or caldera, which produced the block-and-ash flow deposit and the transportation into valley while keeping high temperatures.