• Title/Summary/Keyword: 금호강 유역

Search Result 107, Processing Time 0.026 seconds

Evaluation of Pollution Level Attributed to Nonpoint Sources in Nakdonggang Basin, Korea (낙동강수계 권역별 비점오염원 오염도 평가)

  • Lee, Jaewoon;Kwon, Heongak;Choi, Hanyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.393-405
    • /
    • 2014
  • In this study, the nonpoint sources were evaluated by calculating the Nadonggang basin regional water quality and nonpoint source pollution load discharged. And were selected the banks of first administration based on the results and the direction of the next administration. As a results of estimating the water quality about BOD concentration in the mid influence area in the Nakdonggang basin, it was founded that 10 sites for 'Ia' water quality level, 6 sites for 'lb' water quality level, 5 sites for 'II' water quality level, 1 sites for 'I' water quality level. The estimation of COD concentration in the mid influence area, It showed that 9 sites for 'Ib' water quality level, 6 sites for 'II' water quality level, 6 sites for 'III' water quality level, 1 site for 'IV' water quality level. The assessment of water quality made Mid influence area of Gumhogang, Nakdong Goryung, Nakdong Milyang and Namgang selected as the mid influence area of high pollution. And delivery loads of nonpoint sources were calculated for mid influence area in Nakdonggang basin(max delivery load : 17,706.7 kg/day for Gumhogang influence area). As the result of calculating NPS(nonpoint sources) delivery load and water quality at influence area in Nakdonggang basin, Gumhogang influence area was selected as an area for management priority among nonpoint sources.

Development of Korean Environmental Windows using Entropy (엔트로피를 이용한 한국형 환경창 개발)

  • Jeong, Anchul;Oh, Sungryul;Kim, Seoungwon;Kim, Minseok;Jun, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.108-108
    • /
    • 2015
  • 준설이란, 물리적으로 수저의 퇴적물을 제거함으로써 하도관리에서 가장 확실하게 퇴적물을 제거하고 통수 단면적을 증가시킬 수 있는 방법 중 하나이다. 우리나라에서는 주로 해안이나 항만에서 주를 이루어져 왔으며, 하천에서는 주로 골재채취를 목적으로 하는 소규모 준설사업이 대부분이었다. 그러나 4대강 살리기 사업으로 인해서 건설된 다기능보는 수위 및 유량을 조절할 수 있다는 장점이 있는 반면, 흐름 및 유사의 연속성을 차단하여 유사퇴적이 발생할 가능성이 높아졌음으로 이를 위한 대책으로 유지준설이 이루어져야 한다. 준설은 대규모의 사업비가 투입되는 건설공사이면서, 수저의 퇴적물을 물리적으로 제거함에 따라 고탁도를 발생시키고 생태계를 교란시키는 등의 문제가 있다. 준설선진국인 미국의 경우, 이러한 문제점을 최소화하기 위한 일환으로 환경창(EWs; Environmental Windows)을 개발하여 미국 준설사업의 약 80%에 적용하여 관리하고 있다. 환경창이란, 준설 및 준설토 처분에 관한 작업이 이루어질수 있는 기간을 의미하여, 결정적으로 사회 환경적으로 준설에 따른 영향의 강도가 상대적으로 작은 기간을 선정하여 준설을 허용하는 기간이다. 본 연구에서는 이러한 환경창를 국내에 적용하기 위하여 어류, 조류, 친수시설 이용빈도, 홍수기를 이용하였다. 연구대상지역은 낙동강 유역의 금호강 합류점이며, 홍수기에는 준설하지 않는 것을 대전제로 하였다. 어류는 대표어종을 선정하여 연구를 진행하였고, 그 외 조류는 법적보호종인 흑두루미, 친수시설 이용빈도는 4대강 방문객 통계자료를 사용하였다. 엔트로피 가중치 산정방법을 통하여 각 속성별 가중치를 산정하여 최종적으로 한국형 환경창을 제시하였다. 본 연구에서 제시한 한국형 환경창은 기존의 환경창과 비교하였을 때, 영향의 정도를 수치로 표현하여 의사결정권자가 간편하게 환경창을 결정할 수 있도록 의사결정지원을 한다는 장점이 있다.

  • PDF

Application of Multivariate Statistical Techniques to Analyze the Pollution Characteristics of Major Tributaries of the Nakdong River (낙동강 주요 지류의 오염특성 분석을 위한 다변량 통계기법의 적용)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2019
  • In this study, we analyzed the water quality characteristics of major tributaries of Nakdong River through statistical analysis such as correlation analysis, principal component and factor analysis, and cluster analysis. Organic matter and nutrients are highly correlated, and are high in spring and autumn, and seasonal water quality management is required. Principal component and factor analysis showed that 82% of total variance could be explained by 4 principal components such as organic matter, nutrients, nature, and weather. BOD, COD, TOC, and TP items were analyzed as major influencing factors. As a result of the cluster analysis, the four clusters were classified according to seasonal organic matter and nutrient pollution. Kumho River watershed showed high pollution characteristics in all seasons. Therefore, effective management of water quality in tributary streams requires measures in consideration of spatio-temporal characteristics and multivariate statistical techniques may be useful in water quality management and policy formulation.

Characteristics of Occurrence of Pharmaceuticals in the Nakdong River (낙동강 중류수계에서 의약물질의 분포특성)

  • Lee, Sun-Hwa;Jung, Hyun-Wook;Jung, Jin-Young;Min, Hye-Ju;Kim, Bo-Ram;Park, Chan-Gap;Oh, Jeong-Eun;Onoda, Yuu;Satou, Nobuyuki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.45-56
    • /
    • 2013
  • This study was suggested as fundamental data to control medical materials remained in Nakdong range gauge. The level of Iopromide detected in Nakdong mainstream was $0.0015{\sim}0.37{\mu}g/L$, Mefenamic acid $0.0087{\sim}0.056{\mu}g/L$, Diclofenac $N.D.{\sim}0.01{\mu}g/L$, Atenolol $N.D.{\sim}0.024{\mu}g/L$, Propranolol $N.D.{\sim}0.0038{\mu}g/L$, Lincomycin $0.0005{\sim}0.038{\mu}g/L$, and Trimethoprim $N.D.{\sim}0.0083{\mu}g/L$. At sewage disposal plant in the region, most of them were detected high levels of density. Especially, the level of Iopromide was found the highest up to $5.38{\mu}g/L$. At livestock wasted water disposal plant, the level of lincomycin was detected the highest figure of $477{\mu}g/L$. As a result, medical materials from Nakdong River mainstream got increasing the concentration due to inflow from sewage disposal plant in Gumi and River Geumho in Daegu, which affects residential and industrial areas significantly. Therefore, to control medical materials remained in Nakdong River efficiently, Geumho River and sewage disposal plants shall be continuously monitored and managed, which is recommendable.

Impact of Urbanization on Hydrology of Geumho River Watershed: A Model Study (금호강 유역의 수문환경에 대한 도시화의 영향: 모형 연구)

  • Kim, Jae-Chul;Lee, Jiho;Yoo, Chulsang;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.535-542
    • /
    • 2007
  • The Geumho river watershed located in the middle of the Nakdong river has been threatened by high population growth and urbanization. Of concern specifically is the potential impact of future developments in the watershed on the reduction of base flow and the consequent risk of degradation of ecological habitats in Geumho river. Anticipated increase in imperviousness, on the other hand, is expected to elevate flood risk and the associated environmental damage. A watershed hydrology based modeling study is initiated in this study to assist in planning for sustainable future development in the Geumho river watershed. The Soil and Water Assessment Tool (SWAT) is selected to model the impact of urbanization in the Geumho river watershed on the hydrologic response thereof. The modeling results show that in general the likelihood that the watershed will experience high and low stream flows will increase in view of the urbanization so far achieved.

Study on the simulation of emission characteristics and sources contribution of 4-nitrophenol in the Geumho River (금호강 유역에서의 4-nitrophenol 배출 특성과 오염원 기여도 모의 연구)

  • Park, Kyeong-Deok;Yang, Duk-Seok;Lee, In-Jung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • In the Geumho River, 4-nitrophenol has been detected, thus it is necessary to investigate the contamination sources in order to prevent the release of this compound. However, the research to estimate the potential source is regarded as complicated research. In this study, the distributions of 4-nitrophenol were simulated and the contribution of the potential sources was estimated using a numerical model(HydroGeoSphere; HGS) and the measuring data of 4-nitrophenol from 2013 to 2017. The altitude data, the land cover data, the flow rates of the tributaries and wastewater treatment plants, and the decay rate of 4-nitrophenol was used as the input data. The results of this research showed that the contribution rates of potential contamination sources in the upstream area were higher than that of the downstream area. Most of the upstream area is the agricultural area, it seemed that 4-nitrophenol was originated from the pesticides. In order to achieve more specific location of sources, an intensive investigation in the upstream is required.

Analysis of Stream Physiographic Characteristics of River Basin by using GIS (지리정보시스템을 이용한 하천유역의 지상학적 특성분석)

  • Ahn, Seung-Seop;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.23-34
    • /
    • 1999
  • This study proposed the possibility of GIS to analyze stream physiographic characteristics of river basin which is important control factor in complex water management. Based on five 1:25,000 topographic maps which cover Yengchon Dam area locates upper area of Kumho River, this study analyzed the characteristics using Arc/Info(UNIX) GIS. Comparing its results and those from the existing method using digital planimeter, it could conclude as follows; First, as the results of the analysis of hypsometric curve of Yeungchon Dam area, it has the topographic characteristics of youth and maturity. And the landform of Yengchon Dam area has developed with regularity when Horton's three laws on the morphology of stream is applied. Second, the possibility of applying GIS to data management and utilization is sufficient even if it requires long time to construct topographic attribute data. Finally, a further research is needed on watershed direction with landform for the purpose of analyzing water source management and topographic property effectively.

  • PDF

Water Quality Management Measures for TMDL Unit Watershed Using Load Duration Curve (수질오염총량 단위유역별 LDC(Load Duration Curve, 부하지속곡선) 적용을 통한 수질관리 대안 모색 - 금호강 유역 대상)

  • Yun, Soyoung;Ryu, Jaena;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • This study was to develop effective water quality management measures using LDC (Load Duration Curve) curves for TMDL (Total Maximum Daily Loads) unit watershed. Using LDC curves, major factors for BOD and T-P concentration loads generation (i.e. point source or non-point source) in the case study area (Geumho river basin) were found for different hydrologic conditions. Different measures to deal with the pollutant loads were suggested to establish BMPs (Best Management Practices). It was found that the target area has urgent T-P management methods especially at moist and midrange hydrologic conditions because of point source pollutants occurred in developed areas. One example measure for this could be establishment of advanced treatment facility. This study proved that the use of LDC was a useful way to achieve TWQ (Target Water Quality) on the target watershed considered. It was also expected that the methodology applied in this study could have a wider application on the establishment of watershed water management measures.

Development of water use flow estimation method according to temporal flow variation for securing available water (가용수량 확보를 위한 이수유량의 기간별 산정 방법 개발)

  • Lee, Eul Rae;Choi, Hyun Gu;Kim, Han Na;Lim, Ji Sang;Lee, Sul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.252-252
    • /
    • 2017
  • 지금까지 이수유량의 산정은 공급의 안정성을 보장하고자 보수적인 관리체계를 유지해왔다. 시공간적 하천유량의 변동에도 최대 용수수요를 만족할 수 있게끔 기준갈수량을 기준으로 이수유량을 산정하였다. 이는 공급의 안정성은 보장되나 연중 동일 기준을 적용하여 홍수기와 같이 물량이 많은 경우에 있어서 추가적인 유량사용이 불가능하였다. 이에 따라 기존 방법의 단점을 보완하고 시 공간적인 하천유량의 변화를 고려하여 가용수량을 확보하며 물사용 효율성을 증대시킬 수 있는 방안 모색이 필요하다. 이에 선행 연구인 시 공간적 유량변화를 반영한 탄력적인 하천수 사용허가 기준유량 설정방법에서는 홍수기/이수기, 관개기/비관개기를 고려하여 4개의 기간 구분하였다. 본 연구에서는 이수기/홍수기 구분을 제외하고 시기별 변화가 큰 농업용수 사용 시기를 기준으로 관개기/비관개기만을 고려하여 이수 유량의 산정방안을 검토하였으며, 이를 통해 각 기간별로 안정적인 공급이 가능한 기준유량 산정방법을 제시하여 기존의 방법을 개선하고자 한다. 위방법론을 적용한 결과, 기간별 탄력적인 기준유량의 산정으로 수량확보시설을 설치하지 않고 관리기준을 변경하는 것만으로 금호강 유역에서는 약 56.6백만$m^3$/년, 내성천 유역에서는 약 43.4백만$m^3$/년의 유량을 확보 가능한 것으로 분석되었다. 이는 추가적인 인프라를 구축하지 않고 관리기준을 변경하는 것만으로 가용유량의 추가 확보가 가능할 것으로 판단된다. 탄력적 이수유량 산정 방법을 통해 확보된 수량은 신규 수원 확보 사업의 추진 및 이를 위한 예산 확보 등의 정책적인 어려움을 개선할 수 있는 방안으로 될 수 있으며, 또한 용수공급 안정도를 유지하면서 하천수의 효율적인 활용에도 기여할 수 있다.

  • PDF

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.