• Title/Summary/Keyword: 금형강

Search Result 172, Processing Time 0.021 seconds

The study on the change of wear resistance of STD11 steel by nitrogen implantation (질소이온 주입에 의한 STD 11강의 내마모 특성변화에 관한 연구)

  • Han, Jeon G.;Song, Keun;Park, Jin Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.4
    • /
    • pp.449-456
    • /
    • 1994
  • 산업용 주요 냉간금형 소재인 STD 11 강에 질소이온주입하여 이온조입조거에 따른 질화물형성 거동, 경도 및 내마모성 변화에 관해 연구하였다. XRD분석결과 90keV 에너지로 5$\times$1017 ions/cm2 조사 량 이상에서 Fe2N형태의 질화물이 형성되었으며 3$\times$1016 ions/cm2 범위의 모든 조사량에서 경도 및 조 사량에서 경도 및 내마모성 향상효과를 얻었다. Al2O3와의 ball-on-disc 마모거동 분석결과 STD 11모재 는 응착마모와 산화마모의 혼합형태로 마모되는 반면 질소이온주입한 경우 산화마모 경향이 강하게 나 타났다.

  • PDF

Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser (연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성)

  • Shin, Ho-Jun;Yoo, Young-Tae;Oh, Yong-Seak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

Three-Dimensional Numerical Simulation of Mold-Filing and Void Formation During Vacuum-Assisted Resin Transfer Molding (VARTM 공정에서의 금형 충전 및 기공 형성에 관한 3차원 수치해석)

  • 강문구;배준호;이우일
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • In the vacuum assisted RTM (VARTM) process that has become the center of attention for manufacturing massive composite structures, a good evacuation of air in the fiber preform is recognized as the prime factor. The microvoids, or the dry spots, are formed as a result of improper gate/vent locations and the mold geometry. The non-uniform resin velocity at the flow front leads to the formation of microvoids in the fibers, whereas the air in the microvoids can migrate along with the resin flow during mold filling. The residual air in the internal voids of a composite structure may cause a degradation of the mechanical properties as well as the structural failure. In this study, a unified macro- and micro analysis methods were developed to investigate the formation and transport of air in resin during VARTM process. A numerical simulation program was developed to analyze the three-dimensional flow pattern as well as the macro- and microscopic distribution of air in a composite part fabricated by VARTM process.

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

Study of the Development for Qualification of Occupational Category Combined Working and Learning -Oriented toward Mold & die in Machine Field- (일학습병행제 자격직종 개발에 관한 연구 -기계분야 금형직종을 중심으로-)

  • Kang, Seog Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5925-5932
    • /
    • 2014
  • The aim of this study was to develop assessment tools for analyzing society focusing on abilities, not an academic clique. The development of a type of occupational qualification, which is called a working and learning system, for Koreans, can be reliable and acceptable to a variety of society members. This study was conducted by searching for a dual system and examining a qualification system in developed countries. To achieve the goal of this study, the management status according to a type of qualification system was analyzed. In addition, a variety of related laws, related department, testing authority, testing institute, terms of applying for tests, way of testing, committee of testing, testing subjects, criterion for passing tests, a status of qualification test administrated in some developed countries, such as Germany, UK, the USA and Australia, were conducted. The occupational duty of the machine field and education contents are examined by analyzing the occupational duty. In addition, the criterion to solve problems and a way of marking in the field of machines were indicated and an example of written and practical tests is presented. This study makes a blueprint for a qualification system of working and learning at the same time in a national dimension.

Investigation of Weldline Strength with Various Heating Conditions (국부 금형가열에 조건에 따른 사출성형품 웰드라인의 강도 고찰)

  • Park, Keun;Sohn, Dong-Hwi;Seo, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.105-112
    • /
    • 2010
  • Weldlines are generated during the injection molding process when two or more melt flows are brought into contact. The weldlines are unavoidable in the cases of presence of holes or inserts, multi-gated delivery systems, significant thickness change, etc. At the welded contact region, a 'V'-shaped notch is formed on the surface of the molded part. This 'V'-notch deteriorates not only surface appearance but also mechanical strength of the molded part. To eliminate or reduce weldlines so as to improve the weldline strength, the mold temperature at the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. The present study implements high-frequency induction heating in order to rapidly raise mold surface temperature without a significant increase in cycle time. This induction heating enables to local mold heating so as to eliminate or reduce weldlines in an injection-molded plastic part. The effect of induction heating conditions on the weldline strength and surface appearance of an injection-molded part is investigated.

Micromachining for plastic mold steel using DPSS UV laser and wet etching (DPSS UV Laser와 습식 식각을 이용한 금형강 미세 가공)

  • Min, Kyoung-Ik;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun;Whang, Kyung-Hyun
    • Laser Solutions
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper describes the method for the fabrication of micro dot array on a plastic mold steel using DPSS (diode pumped solid-states) UV laser and wet etching process. We suggest the process of the ablation of a photoresist (PR) coated on plastic mold steel and wet etching process using solutions of various concentrations of $FeCl_3$, $HNO_3$ in water as etchant. This method makes it possible to fabricate metallic roller mold because the microstructures are directly fabricated on the metal surface. In the range of operating conditions studied, $17\;{\mu}J$ laser pulse energy and 50 ms laser exposure time, an etchant containing 40wt% $FeCl_3$, 5wt% $HNO_3$ and etch time for 45 s gave the $10\;{\mu}m$ of micro dot pattern on plastic mold steel.

  • PDF

Automatic Tool Compensation for an UHSS Automotive Component Using a Compensation Module (금형보정 모듈을 이용한 초고강도강 자동차부품용 프레스금형의 자동보정)

  • Lee, J.H.;Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.109-115
    • /
    • 2016
  • In the current study, automatic tool compensation is accomplished by using a finite element stamping analysis for a center roof rail made of UHSS in order to satisfy the specifications for shape accuracy. The initial blank shape is calculated from a finite element inverse analysis and potential forming defects such as tearing and wrinkling are determined by the finite element stamping analysis based on the initial tool shape. The blank shape is optimized to meet the shape requirements of the final product with the stamping analysis, and die compensation is determined with the information about springback. The specifications for shape accuracy were successfully achieved by the proposed die compensation scheme using the finite element stamping analysis. The current study demonstrates that the compensation tendency is similar when the proposed scheme is used or when the compensation is performed by trial and error in the press-shop. This similarity verifies that the automatic compensation scheme can be used effectively in the first stage of tool design especially for components made from UHSS.

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.

Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing (금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가)

  • Lee, Sung-Yun;Lee, In-Kyu;Jeong, Myeong-Sik;Lee, Jae-Wook;Lee, Seon-Bong;Lee, Sang-Kon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.