• Title/Summary/Keyword: 금속 박판

Search Result 125, Processing Time 0.027 seconds

다점용접부의 스트레인 측정에 관한 연구

  • 김인주;정영재;손준식;박창언;김일수;성백섭;차용훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.192-192
    • /
    • 2004
  • 최근의 산업사회에서 각종 구조물접합 등에서 점용접의 사용이 점차 증가하고 있는 실정이다. 점용접은 전기저항용접(Resistance Welding)의 한 분야로 가압 효과에 의하여 용접 후의 금속 조직이 양호하고, 변형과 잔류응력이 모재에 미치는 영향 등이 타 용접 방법에 비하여 적은 것으로 알려져 있어 주로 박판의 이음 중 리벳 조인트를 대신하고 있다.(중략)

  • PDF

Stacking Sequence Design of Fiber-Metal Laminate Composites for Maximum Strength (강도를 고려한 섬유-금속 적층 복합재료의 최적설계)

  • 남현욱;박지훈;황운봉;김광수;한경섭
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.42-54
    • /
    • 1999
  • FMLC(Fiber-Metal Laminate Composites) is a new structural material combining thin metal laminate with adhesive fiber prepreg, it nearly include all the advantage of metallic materials, for example: good plasticity, impact resistance, processibility, light weight and excellent fatigue properties. This research studied the optimum design of the FMLC subject to various loading conditions using genetic algorithm. The finite element method based on the shear deformation theory was used for the analysis of FMLC. Tasi-Hill failure criterion and Miser yield criterion were taken as fitness functions of the fiber prepreg and the metal laminate, respectively. The design variables were fiber orientation angles. In genetic algorithm, the tournament selection and the uniform crossover method were used. The elitist model was also used to be effective evolution strategy and the creeping random search method was adopted in order to approach a solution with high accuracy. Optimization results were given for various loading conditions and compared with CFRP(Carbon Fiber Reinforced Plastic). The results show that the FMLC is more excellent than the CFRP in point and uniform loading conditions and it is more stable to unexpected loading because the deviation of failure index is smaller than that of CFRP.

  • PDF

A Study on a micro dynamic tester development for a micro property measurement of a micro metal specimen (마이크로 금속 박판의 동적 물성치 측정을 위한 마이크로 동적 시험 장치 개발에 관한 연구)

  • Lee, Jin-Pyo;Lee, Hye-Jin;Hwang, Jai-Hyuk;Lee, Nak-Kyu;Bae, Jae-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.163-168
    • /
    • 2006
  • In a micro-unit of electronic-machine, vibration can be excited by a small impact, and this vibration acts as a fatigue load. To measure the vibration effect on the micro unit, a micro dynamic tester is needed to test a micro specimen. In this paper, it has confirmed a movement of the PZT(piezo actuator) to use a sine signal. And, it has confirmed a fracture of specimens by using a tension-tension input signal in PZT. A metal-material property in the micro scale has been tested to compare with the macro scale. A fatigue test has been conducted by using PZT actuator to give a bending-tension effect.

  • PDF

The Establishment of Bonding Conditions of Cu Using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 용착성 실험)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.570-575
    • /
    • 2011
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper analyzed Cu sheet deposition characteristics using ultrasonic metal welder and tension tester. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu plates. The Cu sheet welding was done with different amplitude, pressure, and welding time, and its maximum tension was measured with tension tester. Maximum tension of 153.87N was obtained when the pressure was 2.0bar, amplitude was 80%, and welding time was 0.30s. Therefore, excessive welding condition negatively influences maximum tension measurement result.

The Establishment of Bonding Conditions of Cu Sheet using an Ultrasonic Metal Welder (초음파 금속 용착기를 이용한 Cu 박판의 접합성 평가)

  • Park, Woo-Yeol;Jang, Ho-Su;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each part's shape, length and mass can affect driving frequency and vibration mode. This paper gives a description of an experimental study of the ultrasonic welding of metals. A horn suitable for 40,000Hz was attached to the ultrasonic metal welder in order to weld Cu sheet. The Cu sheet welding was done with different amplitude, pressure and welding time, and its maximum tension was measured. Maximum tension of 177.99N was obtained when the pressure was 2.5bar, amplitude was 80%, and welding time was 0.34sec. Therefore, excessive welding condition negatively influences maximum tension measurement result.

Mechanical Behavior of New Thin Sandwich Panel Subjected to Bending (새로운 박판샌드위치 판재의 삼점굽힘거동)

  • Lee, Jung-In;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • A new thin sandwich panel composed of an aluminum expanded metal core adhesively jointed with stainless steel face sheets is introduced, and its mechanical behavior under three-point bending is investigated. The strength and stiffness are analyzed theoretically, and the press-formability and strength enhancement are evaluated experimentally. The specimens with the specific configurations exhibit face yielding well before face-core separation, which means that the sandwich panel can be formed by a press without failure. The measured load levels corresponding to the face yielding and the face-core separation agree fairly well with the theoretical estimations. For a given weight, the sandwich panel is superior to a solid panel in terms of strength, stiffness, and press-formability.

Separation Phenomenon Occurring during Charpy Impact test of API X80 Linepipe Steels (API X80 라인파이프강의 샤르피 충격 시험 시 발생하는 파열 현상 연구)

  • Shin, Sang Yong;Hong, Suckmin;Bae, Jin-ho;Kim, Kisoo;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.155-168
    • /
    • 2009
  • In this study, microstructural investigation was conducted on the separation phenomenon occurring during Charpy impact tests of API X80 linepipe steels. Particular emphasis was placed on the role of microstructural phases present in the API X80 steels such as acicular ferrite, bainite, and hard secondary phases. Detailed microstructural analysis of fractured impact specimens showed that highly elongated bainite worked as prior initiation sites for separations, and that the number and length of separations increased with increasing volume fraction of bainite. In the steels having high work hardenability, tearing-shaped separations were found because the hammer-impacted region was seriously hardened during the impact test, which led to the reduction in the impact toughness. As the test temperature decreased, the tendency of separations increased, but separations were not observed when the cleavage fracture prevailed at very low temperatures. Thus, the minimization of the formation of bainite and secondary phases in the steels would be beneficial for preventing or minimizing separations because separations deteriorated low-temperature impact toughness.

Effect of Precipitates on Hot Ductility Behavior of Steel Containing Ti and Nb (Ti-Nb 합금강에서 합금성분의 변화에 따른 석출물거동이 고온연성에 미치는 영향)

  • Han, Won Bae;Lee, Jong Ho;Kim, Hee-Soo;An, Hyeun Hwan;Lee, Seung Jae;Kim, Seong Woo;Seo, Seok Jong;Yoon, Chong Seung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.285-292
    • /
    • 2012
  • Hot ductility behavior of precipitation-hardened low-carbon iron alloys containing 0.02 wt% Ti and 0.05 wt% Nb was characterized by a hot tensile stress test. Carbon (0.05, 0.1, 0.25 wt%) and boron (0.002 wt%) contents were varied to study the effect of precipitates on the high-temperature embrittlement of the alloys in the temperature range of $600{\sim}800^{\circ}C$. Ductility loss was observed at $700^{\circ}C$ for the tested alloys. The cause of the ductility loss was mainly attributed to the carbides and ferrite films formed at the grain boundaries during deformation. Although the carbon content tended to raise the total fraction of Nb (C, N), the precipitates were formed mostly in the grain interior as the precipitation temperature was raised above the deformation temperature by the high carbon content. Hence, carbon in excess suppressed the hot ductility loss. Meanwhile, boron addition improved the hot ductility of the alloys. The improvement is likely due to the boron atoms capturing carbon atoms and thus retarding the carbide formation.

Effect of Mo, Cr, and V on Tensile and Charpy Impact Properties of API X80 Linepipe Steels Rolled in Single Phase Region (단상영역에서 압연된 API X80 라인파이프강의 인장 및 샤르피 충격 특성에 미치는 Mo, Cr, V의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Seo, Chang-hyo;Lee, Hakcheol;Bae, Jin-ho;Kim, Kisoo;Lee, Sunghak;Kim, Nack J.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.788-799
    • /
    • 2008
  • This study is concerned with the effects of Mo, Cr, and V addition on tensile and Charpy impact properties of API X80 linepipe steels. Four kinds of steels were processed by varying Mo, Cr, and V additions, and their microstructures and tensile and Charpy impact properties were investigated. Since the addition of Mo and V promoted to form fine acicular ferrite and granular bainite, while prohibiting the coarsening of granular bainite, it increased the strength and upper shelf energy, and decreased the energy transition temperature. The Cr addition promoted the formation of coarse granular bainite and secondary phases such as martensite-austenite constituents, thereby leading to the increased effective grain size, energy transition temperature, and strength and to the decreased upper shelf energy. The steel containing 0.3wt.% Mo and 0.06wt.% V without Cr had the highest upper shelf energy and the lowest energy transition temperature because its microstructure was composed of fine acicular ferrite and granular bainite, together with a small amount of hard secondary phases, while its tensile properties maintained excellent.

Effect of Cooling Conditions on Microstructures and Mechanical Properties in API X80 Linepipe Steels (API X80 라인파이프강의 미세조직과 기계적 특성에 미치는 냉각조건의 영향)

  • Han, Seung Youb;Shin, Sang Yong;Lee, Sunghak;Bae, Jin-ho;Kim, Kisoo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.523-532
    • /
    • 2009
  • In this study, four API X80 linepipe steel specimens were fabricated with varying cooling rates and finish cooling temperatures, and their microstructures and crystallographic orientations were analyzed to investigate the effects of cooling conditions on their tensile and Charpy impact properties. All the specimens consisted of acicular ferrite, granular bainite, and secondary phases such as martensite and martensiteaustenite constituent. The volume fraction of secondary phases increased with increasing cooling rate, and the higher finish cooling temperature resulted in the reduction in volume fraction and grain size of secondary phases. According to the crystallographic orientation analysis data, the effective grain size and unit crack path decreased as fine acicular ferrites having a large amount of high-angle grain boundaries were homogeneously formed, thereby leading to the improvement of Charpy impact properties. The specimen fabricated with the higher cooling rate and lower finish cooling temperature had the highest upper shelf energy and the lowest energy transition temperature because it contained a large amount of fine secondary phases homogeneously distributed inside fine acicular ferrites, while its tensile properties well maintained.