• Title/Summary/Keyword: 금속지지체

Search Result 133, Processing Time 0.018 seconds

A Study on the Influence of the Structural Characteristics of Cu/CeO2 Catalyst on the Low-Temperature Oxidation of Carbon Monoxide (Cu/CeO2 촉매의 구조적 특성이 일산화탄소 저온 산화반응에 미치는 영향 연구)

  • Kim, Min Su;Choi, Gyeong Ryun;Kim, Se Won;Hong, Sung Chang
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • This study confirmed the effect of the Cu/CeO2-X catalyst on the CO oxidation activity at low temperature through the catalyst's structure and reaction characteristics. The catalyst was prepared by the wet impregnation method. Cu/CeO2_X catalysts were manufactured by loading Cu (active metal) using CeO2 (support) formed at different calcination temperatures (300-600 ℃). Manufactured Cu/CeO2_X catalysts were evaluated for the low-temperature activity of carbon monoxide. The Cu/CeO2_300 catalyst showed an activity of 90% at 125 ℃, but the activity gradually decreased as the calcination temperature of the CeO2-X and Cu/CeO2_600 catalysts showed an activity of 65% at 125 ℃. Raman, XRD, H2-TPR, and XPS analysis confirmed the physicochemical properties of the catalysts. Based on the XPS analysis, the lower the calcination temperature of the CeO2 was, the higher the unstable Ce3+ species (non-stoichiometric species) ratio became. The increased Ce3+ species formed a solid solution bond between Cu and CeO2-X, and it was confirmed by the change of the CeO2 peak in Raman analysis and the reduction peak of the solid solution structure in H2-TPR analysis. According to the result, the formation of the solid solution bond between Cu and Ce has been enhanced by the redox properties of the catalysts and by CO oxidation activity at low temperatures.

A optimization study on the preparation and coating conditions on honeycomb type of Pd/TiO2 catalysts to secure hydrogen utilization process safety (수소 활용공정 안전성 확보를 위한 Pd/TiO2 수소 상온산화 촉매의 제조 및 허니컴 구조의 코팅 조건 최적화 연구)

  • Jang, Young hee;Lee, Sang Moon;Kim, Sung Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.47-54
    • /
    • 2021
  • In this study, the performance of a honeycomb-type hydrogen oxidation catalyst to remove hydrogen in a hydrogen economy society to secure leaking hydrogen. The Pd/TiO2 catalyst was prepared based on a liquid phase reduction method that is not exposed to a heat source, and it was showed through H2-chemisorption analysis that it existed as very small active particles of 2~4 nm. In addition, it was found that the metal dispersion decreased and the active particle size increased as the reduction reaction temperature increased. It was meant that the active metal particle size and the hydrogen oxidation performance were in a proportional correlation, so that it was consistent with the hydrogen oxidation performance reduction result. The prepared catalyst was coated on a support in the form of a honeycomb so that it could be applied to the hydrogen industrial process. When 20 wt% or more of the AS-40 binder was coated, oxidation performance of 90% or more was observed under low-concentration hydrogen conditions. It was showed through SEM analysis that long-term catalytic activity can be expected by enhancing the adhesion strength of the catalyst and preventing catalyst desorption. It is a basic research that can secure safety in a hydrogen society such as gasification, organic resource, and it can be utilized as a system that can respond to unexpected safety accidents in the future.

Decomposition of Eco-friendly Liquid Propellants over Platinum/Hexaaluminate Pellet Catalysts (백금/헥사알루미네이트 펠렛 촉매를 이용한 친환경 액체 추진제 분해)

  • Jo, Hyeonmin;You, Dalsan;Kim, Munjeong;Woo, Jaegyu;Jung, Kyeong Youl;Jo, Young Min;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.371-379
    • /
    • 2018
  • The objective of this study is to develop a platinum/hexaaluminate pellet catalyst for the decomposition of eco-friendly liquid propellant. Pellet catalysts using hexaaluminate prepared by ultrasonic spray pyrolysis as a support and platinum as an active metal were prepared by two methods. In the case of the pellet catalyst formed by loading the platinum precursor onto the hexaaluminate powder and then adding the binder (M1 method catalyst), the mesopores were well developed in the catalyst after calcination at $550^{\circ}C$. However, when this catalyst was calcined at $1,200^{\circ}C$, the mesopores almost collapsed and only a few macropores existed. On the other hand, in the case of a catalyst in which platinum was supported on pellets after the pellet was produced by extrusion of hexaaluminate (M2 method catalyst), the surface area and the mesopores were well maintained even after calcination at $1,200^{\circ}C$. Also, the catalyst prepared by the M2 method showed better heat resistance in terms of platinum dispersion. The effects of preparation method and calcination temperature of Pt/hexaaluminate pellet catalysts on the decomposition of liquid propellant composed mainly of ammonium dinitramide (ADN) or hydroxyl ammonium nitrate (HAN) were investigated. It was confirmed that the decomposition onset temperature during the decomposition of ADN- or HAN- based liquid propellant could be reduced significantly by using Pt/hexaaluminate pellet catalysts. Especially, in the case of the catalyst prepared by the M2 method, the decomposition onset temperature did not show a large change even when the calcination temperature was raised at $1,200^{\circ}C$. Therefore, it was confirmed that Pt/ hexaaluminate pellet catalyst prepared by M2 method has heat resistance and potential as a catalyst for the decomposition of the eco-friendly liquid propellants.