• 제목/요약/키워드: 금속전환

Search Result 315, Processing Time 0.031 seconds

Reliability Evaluation of ACP Component under a Radiation Environment (방사선환경에서 ACP 주요부품의 신뢰도 평가)

  • Lee, Hyo-Jik;Yoon, Kwang-Ho;Lim, Kwang-Mook;Park, Byung-Suk;Yoon, Ji-Sup
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.309-322
    • /
    • 2007
  • This study deals with the irradiation effects on some selected components which are being used in an Advanced Spent Fuel Conditioning Process (ACP). Irradiation test components have a higher priority from the aspect of their reliability because their degradation or failure is able to critically affect the performance of an ACP equipment. Components that we chose for the irradiation tests were the AC servo motor, potentiometer, thermocouples, accelerometer and CCD camera. ACP facility has a number of AC servo motors to move the joints of a manipulator and to operate process equipment. Potentiometers are used for a measurement of several joint angles in a manipulator. Thermocouples are used for a temperature measurement in an electrolytic reduction reactor, a vol-oxidation reactor and a molten salt transfer line. An accelerometer is installed in a slitting machine to forecast an incipient failure during a slitting process. A small CCD camera is used for an in-situ vision monitoring between ACP campaigns. We made use of a gamma-irradiation facility with cobalt-60 source for an irradiation test on the above components because gamma rays from among various radioactive rays are the most significant for electric, electronic and robotic components. Irradiation tests were carried out for enough long time for total doses to be over expected threshold values. Other components except the CCD camera showed a very high radiation hardening characteristic. Characteristic changes at different total doses were investigated and threshold values to warrant at least their performance without a deterioration were evaluated as a result of the irradiation tests.

  • PDF

A Case Study of "Engineering Design" Education with Emphasize on Hands-on Experience (기계공학과에서 제시하는 Hands-on Experience 중심의 "엔지니어링 디자인" 교과목의 강의사례)

  • Kim, Hong-Chan;Kim, Ji-Hoon;Kim, Kwan-Ju;Kim, Jung-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.2
    • /
    • pp.44-61
    • /
    • 2007
  • The present investigation is concerned chiefly with new curriculum development at the Department of Mechanical System & Design Engineering at Hongik University with the aim of enhancing creativity, team working and communication capability which modern engineering education is emphasizing on. 'Mechanical System & Design Engineering' department equipped with new curriculum emphasizing engineering design is new name for mechanical engineering department in Hongik University. To meet radically changing environment and demands of industries toward engineering education, the department has shifted its focus from analog-based and machine-centered hard approach to digital-based and human-centered soft approach. Three new programs of Introduction to Mechanical System & Design Engineering, Creative Engineering Design and Product Design emphasize hands-on experiences through project-based team working. Sketch model and prototype making process is strongly emphasized and cardboard, poly styrene foam and foam core plate are provided as working material instead of traditional hard engineering material such as metals material because these three programs focus more on creative idea generation and dynamic communication among team members rather than the end results. With generative, visual and concrete experiences that can compensate existing engineering classes with traditional focus on analytic, mathematical and reasoning, hands-on experiences can play a significant role for engineering students to develop creative thinking and engineering sense needed to face ill-defined real-world design problems they are expected to encounter upon graduation.

Catalytic Oxidation of Vinyl Chloride on Chromium Oxide Catalysts (크롬 산화물 촉매를 이용한 Vinyl Chloride의 산화 분해반응)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 1999
  • The catalytic oxidation of vinyl chloride was investigated over $CrO_x$ impregnated on $Al_2O_3$ at temperature between 200 and $400^{\circ}C$. The major carbonaceous products were CO and $CO_2$, and the selectivity of $CO_2$ was gradually increased with increasing reaction temperature, while that of CO was dropped consequently. This suggests that CO is the first product which is further oxidized to $CO_2$ in the oxidation of vinyl chloride over $CrO_x/Al_2O_3$. The addition of HCl in the feed didn't affect the conversion of vinyl chloride, but the selectivity of $CO_2$ decreased by adding HCl. It implies that HCl inhibits, the complete oxidation of vinyl chloride to $CO_2$. When oxidizing vinyl chloride in dry air, significant amounts of $Cl_2$ were observed, while no $Cl_2$ was detected in the humid condition. The activities of several catalysts including various precious metals and other transition metal oxides were measured, it was found that the catalytic activity of 12% $CrO_x/Al_2O_3$ was higher than other catalysts except 1% $Pt/Al_2O_3$. The reaction rate of 12% $CrO_x/Al_2O_3$ was 1.2 times lower than that of 1% Pt/alumina, but it was 3 to 8 times more active than other catalysts for vinyl chloride oxidation at $275^{\circ}C$.

  • PDF

Recovery of Tungsten from WC-Co Hardmetal Sludge by Aqua regia Treatment (WC-Co 초경합금(超硬合金) 슬러지로부터 왕수처리(王水處理)를 이용한 텅스텐의 회수(回收))

  • Kim, Ji-Hye;Kim, Eun-Young;Kim, Won-Back;Kim, Byung-Su;Lee, Jae-Chun;Shin, Jae-Soo
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.41-50
    • /
    • 2010
  • A fundamental study was carried out to develop a process for recycling tungsten and cobalt from WC-Co hardmetal sludge generated in the manufacturing process of hardmetal tools. The complete extraction of cobalt and simultaneous formation of tungstic was achieved by treating the sludge using aqua regia. The effect of aqua regia concentration, reaction temperature and time, pulp density on cobalt leaching and tungstic acid formation was investigated. The complete leaching of cobalt was attained at the optimum conditions: 100 vol.% aqua regia concentration, $100^{\circ}C$ temperature, 60 min. reaction time and 400 g/L pulp density. A complete conversion of tungsten carbide of the sludge to tungstic acid was however, obtained at the pulp densities lower than 150 g/L under the above condition. The progress of reaction during the aqua regia treatment of the sludge was monitored through the XRD phase identification of the residue. The metallic impurities in the tungstic acid so produced could be further removed as insoluble residues by dissolving the tungsten values in ammonia solution. The ammonium paratungstate($(NH_4)_{10}{\cdot}H_2W_{12}O_{42}{\cdot}4H_2O$) of 99.85% purity was prepared from the ammonium polytungstate solution by the evaporation crystallization method.

Separation of chlorine in a uranium compound by pyrohydrolysis and steam distillation, and its determination by ion chromatography (열가수분해 및 수증기증류에 의한 우라늄 화합물 중 염소 분리 및 이온크로마토그래피 정량)

  • Kim, Jung-Suk;Lee, Chang-Hun;Park, Soon-Dal;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.45-53
    • /
    • 2010
  • For the determination of chlorine in uranium compound, analytical methods by using a steam distillation and a pyrohydrolysis have been developed. The steam distillation apparatus was composed of steam generator, distilling flask and condenser etc. The samples were prepared with an aliquot of LiCl standard solution and a simulated spent nuclear fuel. A sample aliquot was mixed with a solution containing 0.2 M ferrous ammonium sulfate-0.5 M sulfamic acid 3 mL, phosphoric acid 6 mL and sulfuric acid 15 mL. The chloride was then distilled by steam at the temperature of $140^{\circ}C$ until a volume of $90{\pm}5\;mL$ is collected. The pyrohydrolysis equipment was composed of air introduction system, water supply, quartz reaction tube, combustion tube furnace, combustion boat and absorption vessel. The chloride was separated from powdered sample which is added with $U_3O_8$ accelerator, by pyrohydrolysis at the temperature of $950^{\circ}C$ for 1 hour in a quartz tube with a stream of air of 1 mL/min supplied from the water reservoir at $80^{\circ}C$. The chlorides collected in each absorption solution by two methods was diluted to 100 mL and measured with ion chromatography to determine the recovery yield. For the ion chromatographic determination of chlorine in molten salt retained in a metal ingot, the chlorine was separated by means of pyrohydrolysis after air and dry oxidation, and grinding for the sample.

Effect of Inorganic Coagulants on the Performance of Electro-Chemical Treatment Process Treating Hospital Wastewater (병원폐수의 전기화학적 처리시 무기응집제 주입 효과에 관한 연구)

  • Jeong, Seung-Hyun;Jeong, Byung-Gon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.709-716
    • /
    • 2011
  • Effect of inorganic coagulants dosing on the performance of electro-chemical process was studied when treating hospital wastewater having low electrolyte concentration. It is thought that adding inorganic coagulants caused increase in concentration of electrolyte and this caused increase in free chloride concentration and consequently, caused increase in indirect oxidation effect. Thus, COD removal efficiencies more than doubled in percentage terms at the 2 hrs of reaction time and current density of $1.76A/dm^2$ compared with the results obtained from the parallel experiments without adding inorganic coagulants. T-N removal efficiencies approximately doubled in percentage terms at the 2 hrs of reaction time and 700 ppm of coagulants addition and applied current density of $1.76A/dm^2$ due to the increase of free residual chlorine such as HOCl caused by increase of electrolyte concentration through the addition of inorganic coagulants. Under the same experimental condition, more than 90% of T-P removal efficiencies was obtained. The reason can be explained that increase of chemical adsorption rate between phosphate and insoluble metal compounds caused by dissolved oxygen generated from anode by the increased electrolyte concentration through inorganic coagulants addition make a major role in improving T-P removal efficiencies. It can be concluded that inorganic coagulants addition as the supplemental agent of electrolyte is effective way in improving organic and nutrient salt removal efficiency when treating hospital wastewater having low electrolyte concentration.

Reactivity of SO2 Catalytic Reduction over Sn-Zr Based Catalyst under High Pressure Condition (고압조건에서 Sn-Zr계 촉매상에서 SO2 촉매환원 반응특성)

  • Park, Jung Yun;Park, No-Kuk;Lee, Tae Jin;Baek, Jeom-In;Ryu, Chong Kul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.316-321
    • /
    • 2010
  • The $SO_2$ catalytic reduction was carried out under the condition of high pressure in this study. Sn-Zr based oxide and CO were used as the catalyst and reducing agent for the reduction of $SO_2$ to element sulfur, respectively. In order to compare the reactivity with the pressure on the catalytic process, the reactivity tests were performed under the conditions of atmospheric pressure and 20 atm. $SO_2$ conversion, the element sulfur yield and COS selectivity were also compared with changing the reaction temperature, $CO/SO_2$ mole ratio and the space velocity(GHSV). $SO_2$ conversion increased with increasing temperature and $CO/SO_2$ mole ratio under the condition of atmospheric pressure and element sulfur yield decreased due to the production of COS by the series reaction of CO and the produced sulfur. However, high $SO_2$ conversion and high element sulfur were obtained under the condition of 20 atm. It was concluded that COS decreased due to the condensation of the produced element sulfur under the condition of high pressure. Therefore, the high sulfur yield for $SO_2$ catalytic reduction could be profitably obtained under the condition of high pressure.

Effect of MeOH/IPA Ratio on Coating and Fluxing of Organic Solderability Preservatives (유기 솔더 보존제의 코팅 및 플럭싱에 대한 메탄올/이소프로필알콜 비율의 영향)

  • Lee, Jae-Won;Kim, Chang Hyeon;Lee, Hyo Soo;Huh, Kang Moo;Lee, Chang Soo;Choi, Ho Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.402-407
    • /
    • 2008
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservative (OSP) in order to improve the stability and the reliability of final product. Since current organic solder preservatives have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to investigate the effect of MeOH/IPA (Isopropyl alcohol) ratio on the fluxing of a new OSP, developed in previous research, andto find out an optimum formulation of flux components for the application of the OSP in current packaging process. As a result of this study, it was revealed that higher MeOH/IPA ratio in flux showed better performance of fluxing a new OSP.

Synthesis and Evaluation of Thermo-stable Organic Solderability Preservatives Based Upon Poly(vinyl pyridine-co-methylmethacrylate) (폴리(비닐피리딘-co-메틸메타아크릴레이트) 기반 열안정성 유기솔더보존제의 합성 및 평가)

  • Bui, Tien Van;Choi, Ho-Suk;Seo, Chung-Hee;Jang, Young-Sic;Heo, Ik-Sang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservatives (OSP) in order to improve the stability and the reliability of final product. Since current OSPs have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to develop various thermo-stable OSPs based upon poly(vinyl pyridine-co- methylmethacrylate) and to evaluate their anti-oxidation property protecting Cu pad, thermo-stability and solubility to acid- or alcohol-containing aqueous solution during pos-fluxing. All OSPs showed not only good anti-oxidation property, thermo-stability and solubility but also more advantages like low cost, less odor, and less hygroscopic.

The Study of TCE Dechlorination using Geobacter lovleyi with Slow Release Substrate Applied (Slow Release Substrate를 이용한 Geobacter lovleyi의 TCE 탈염소화 연구)

  • Cha, Jae Hun;An, Sang Woo;Park, Jae Woo;Chang, Soon Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.53-59
    • /
    • 2012
  • This study investigated characteristics of decomposition of tetrabutoxysilane (TBOS) as a slow release substrate (SRS) and on effect of TBOS decompostion compounds (acetate and butylate) for anaerobic dechlorination of trichloroethylene (TCE). In the batch experiment, TCE, cis-dichloroethene (cis-DCE), 1-butanol and TBOS were analysed by GC/FID and acetate and butylate were measured by HPLC. 1M of TBOS transferred and accumulated 4M of 1-butanol by abiotically hydrolysis reaction. The hydrolysis rate was in a range of 0.186 ${\mu}M/day$. On other hand, 1-butanol fermented to butyrate and acetate with indigenous culture from natural sediments. This results showed that TBOS could be used a slow release substrate in the natural sites. The dechlorinated potential of TCE with acetate and butyrate was increased with a decreasing initial TCE concentrations. In addition, first order coefficients of dechlorination with acetate as electron donor was higher then that with butyrate. It is because that dechlorination of Geobacter lovleyi was affected by substrate affinity, biodegradability and microbial acclimation on various substrates. However, dechlorinated potential of Geobacter lovleyi was decreased with accumulation cis-DCE in the anaerobic decholoronation process. The overall results indicated that SRS with Geobacter lovleyi might be a promising material for enhancing dechlorination of TCE on natural site and cis-DCE should be treated by ZVI as reductive material or by coexisting other dechlorinated bacteria.