• Title/Summary/Keyword: 금속배위 리간드

Search Result 56, Processing Time 0.019 seconds

Sythesis and Characterization of Transition Metal(II) Complexes with $NOTDH_2$ Schiff Base ($NOTDH_2$ Schiff Base를 가진 전이금속(II) 착물의 합성과 구조분석)

  • Oh, Jeong-Geun;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.498-503
    • /
    • 1999
  • Co(II), Ni(II), and Cu(II) complexes with tetradentate schiff base-$NOTDH_2$, were synthesized. The structures of these complexes were characterized by elemental analysis, IR, UV-visible, NMR spectra, and thermogravimetric analysis. The mole ratio of schiff base($NOTDH_2$) to the metal(II) at complexes was found to be 1:1. Cu(II) complexes were four-coordinated configuration, while Co(II) and Ni(II) complexes were hexacoordinated configuration containing two water molecules and all complexes were non-ionic compounds.

  • PDF

Synthesis and Characterization of Transition Metal(Ⅱ) Complexes with Tridentate Schiff Base in DMF Solution (DMF용액에서 세자리 Schiff Base를 가진 전이금속(II) 착물들의 합성과 구조결정)

  • Oh, Jeong Geun;Choi, Yong Kook
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.511-516
    • /
    • 1999
  • Shiff Base ligand such as [NOIPH] have been synthesized from 2-hydroxy-1-naphthaldehyde and arometic amine. Co(II), Ni(II), and Cu(II) complexes from the reaction metal salts with Tridentate Schiff Base [NOIPH] were sythesized. The ligand and metal(II) complexes were characterized by the elementary analysis, IR, UV-Vis, NMR spectra, and thermogravimetric analysis. Metal(II) complexes in solid state have been shown that the mole raio of Schiff base [NOIPH] as $N_2O$ type to Metal(II) is 2:1 and the metal(II) complexes of $N_2O$ ligand type were four-coordinated configuration.

  • PDF

Metal Complexes of Ambidentate Ligand (V). Nickel(II) Complexes of Bis(isonitrosobenzoylacetone)diimine Derivatives (Ambidentate 리간드의 금속착물 (제 5 보). Bis(isonitrosobenzoylacetone)diimine 유도체를 리간드로 하는 니켈(II)착물)

  • Jun Young-Sook;Baek Jae-Bum;Lee Man-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.46-50
    • /
    • 1991
  • Some nickel(II) complexes have been derived from the condensation of isonitrosobenzoylacetone and diamine(ethylenediamine and propylenediamine) in the presence of metal ion. It is suggested that an isonitroso group(=N-O) of the ligand coordinates to metal through nitrogen atom to form a five-membered ring while other =N-O coordinates to metal through oxygen atom to form a six-membered ring in Ni(IBN)$_2$-en ((IBA)$_2$-en = N,N'-propylenebis(isonitrosobenzoylacetone imino)). But both isonitroso groups of the ligand coordinate to metal through nitrogen atoms to form five-membered rings in Ni(IBA)$_2$-pn ((IBA)$_2$-pn = N,N'-propylenebis(isonitrosobenzoylacetone imino)).

  • PDF

Synthesis, Characterization and Antimicrobial Activities of Hydrazone Ligands Derived from 2-(phenylamino)acetohydrazide and Their Metal Complexes (2-(Phenylamino)acetohydrazide로부터 유도된 Hydrzone 리간드와 그들의 착물의 합성, 특성 및 항균활성)

  • EL-Saied, F.A.;Shakdofa, M.M.E.;Al-Hakimi, A.N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.444-453
    • /
    • 2011
  • VO(II), ZrO(II), Hf(IV), $UO_2$(II), Sn(II), V(V)$O_3$, Ru(III), Cd(II), Ho(III) and Yb(III) complexes of N'-(2-hydroxybenzyl)-2-(phenylamino)acetohydrazide ($H_2L^1$, 1) and N'-((3-hydroxy-naphthalen-2-yl)methylene)-2-(phenylamino)-acetohydrazide ($H_2L^2$, 13) have been synthesized and characterized by elemental analyses, $^1H$ NMR, IR, UV-Vis, conductance, thermal analyses (DTA and TG). The spectral data showed that the ligands behave as neutral bidentate, monobasic bidentate, monobasic tridentate or bibasic tridentate ligand bonded to the metal ions through the azomethine nitrogen atoms, phenolic hydroxyl group in protonated or deprotonated form and enolic or ketonic carbonyl group. The ligands and their metal complexes exhibit higher antifungal and antibacterial inhibitory effects than parent ligands and the solution of metal ions. Most of metal complexes exhibit higher antifungal activity than standard antifungal drug (amphotricene B). It is also clear that the ligands and their metal complexes have higher antifungal activity than antibacterial activity.

Macrocyclic Complexes of Actinide and Lanthanide Metals (Ⅰ). Formation and Properties of Cation Complexes with Macrocyclic Ligands (악틴 및 란탄족금속의 거대고리 착물 (제 1 보). 거대고리 리간드의 금속착물의 형성과 성질)

  • Jeong, O Jin;Choe, Chil Nam;Yun, Seok Jin;Son, Yeon Su
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.143-158
    • /
    • 1990
  • Metal complexes were prepared by reacting uranium (Ⅵ), thorium (Ⅳ) and rare earth metal (Ⅲ) ions including Nd (Ⅲ), Sm (Ⅲ) and Ho (Ⅲ) with macrocyclic ligands including five crown ethers, nine crownands and one cryptand ligands, and subjected to NMR studies in order to examine coordination sites of the ligands and compositions of the complexes formed. Among the marcocyclic ligands, crown ethers and crownand ligands have shown down-field shifts of the methylene protons of the lcigands by forming stable complexes with all the metal ions and the differences of chemical shifts were decreased as increasing of the cavity-size of crown ethers for the same metal ions and decreasing of the atomic number of the rare earth metals for the same ligands. It has been found that crownand 22 gave a stable complex with uranium(Ⅵ) ion by the coordination through both oxygen and nitrogen atoms of the ligand whereas no complex was formed with the rare earth metal(Ⅲ) ions, which on the other hand were found to form stable complexes with cryptand 221. The rest of the crowand ligands have also been found to form stable complexes with uranium(Ⅵ) ion by coordinating through all the oxygen and nitrogen atoms of the ligands whereas no complexes were formed with the rare earth metal(Ⅲ) ions. It has also been shown by 1H-NMR study that uranium(Ⅵ), thorium(Ⅳ) and rare earth metal(Ⅲ) ions formed 1:1 complexes with the macrocyclic ligands except for thorium(Ⅳ) complex of 12C4 in which the mole ratio of metal to ligand is 1:2. More stable metal complexes show larger changes in chemical shifts of the coordinated ligand protons. Finally, the rare earth metal(Ⅲ) complexes of 18C6 have shown ligand exchange reaction with the solvent molecules in acetylacetone solution, which was not observed for the uranium (Ⅵ) complexes.

  • PDF

Preparation and Structure of [1,2-Bis(diphenylphosphino)ethane](nitrato)(trifluoromethylsulfonato)platinum(II): [Pt(dppe)($NO_3$)($CF_3SO_3$)] ([1,2-Bis(diphenylphosphino)ethane](nitrato)(trifluoromethylsulfonato)platinum(II)의 합성 및 구조: [Pt(dppe)($NO_3$)($CF_3SO_3$)])

  • Huh, Hyun-Sue;Lee, Soon-W.
    • Korean Journal of Crystallography
    • /
    • v.19 no.1
    • /
    • pp.21-24
    • /
    • 2008
  • The title complex [Pt(dppe)($NO_3$)($CF_3SO_3$)] (dppe=1,2-bis(diphenylphosphino)ethane, $Ph_2PCH_2CH_2PH_2$) was prepared by sequentially treating [Pt(dppe)$Cl_2$] with 1 equiv of $AgNO_3$ and 1 equiv AgOTf (OTf=$CF_3SO_3$). The Pt metal is coordinated by two phosphorous atoms of the dppe ligand, one oxygen atom of the nitrato ($NO^-_3$) ligand, and one oxygen atom of the triflato(trifluoromethylsulfonato, $OTf^-$) ligand. The coordination sphere of Pt metal can be described as a distorted square plane.

Synthesis and Conformational Analysis of Novel Polymeric Ligands based on myo-Inositol (마이오 이노시톨을 이용한 고분자 리간드의 합성 및 형태 분석)

  • Kim, Tae-Hyeon;Holmes, Andrew B.
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.129-136
    • /
    • 2006
  • Synthesis of novel polymeric ligands based on myo-inositol was performed. Cyclopolymerization, whose mechanism and the cyclic structure were proved, was first attempted to build a conformationally rigid inositol polymer. Comparative spectroscopic methods were introduced to verify the conformation of the prepared cyclohexane polymers. A conformationally rigid polymeric ligand was successfully prepared using myo-inositol carbonate.

Synthesis and Characterization of Tetradentate N2O2 Schiff Base Ligand and its Rare Earth Metal Complexes (사배위 N2O2 Schiff 염기 리간드와 그 희토류 금속착물의 합성 및 특성)

  • Shelke, Vinod A.;Jadhav, Sarika M.;Shankarwar, Sunil G.;Munde, chut S.;Chondhekar, Trimbak K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.436-443
    • /
    • 2011
  • The solid complexes of La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) with 4-hydroxy-3-(1-{2-(2,4-dihydroxy-benzylidene)-amino phenylimino}-ethyl)-6-methyl-pyran-2-one ($H_2$L) derived from o-phenylenediamine, 3-acetyl-6-methyl-(2H)pyran,2,4(3H)-dione (dehydroacetic acid or DHA) and 2, 4-dihydroxy benzaldehyde have been synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV-visible, FT-IR, $^1H$-NMR, X-ray diffraction, thermal analysis study, and screened for antimicrobial activity. The FT-IR spectral data suggest that the ligand behaves as a dibasic tetradentate ligand with ONNO donor atoms sequence towards central metal ion. From the microanalytical data, the stoichiometry of the complexes has been found to be 1:1 (metal: ligand). The physico-chemical data suggests distorted octahedral geometry for La(III), Ce(III), Pr(III), Nd(III), Sm(III) and Gd(III) complexes. The X-ray diffraction data suggests monoclinic crystal system for La(III) and Ce(III) and orthorombic crystal system for Pr(III) and Nd(III) complexes. Thermal behavior (TG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The ligand and its metal complexes were screened for antibacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus Sp. and fungicidal activity against Aspergillus Niger, Trichoderma and Fusarium oxysporum.

Metal Complexes of Ambidentate Ligand(Ⅳ). Nickel(Ⅱ) and Palladium(Ⅱ) Complexes of bis(isonitrosoacetylacetone)diimine Derivatives (Ambidentate 리간드의 금속착물 (제 4 보). Bis(isonitrosoacetylacetone)diimine 유도체를 리간드로 하는 니켈(Ⅱ) 및 팔라듐(Ⅱ) 착물)

  • Man-Ho Lee;Seon-Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.428-435
    • /
    • 1988
  • Some nickel(Ⅱ) and palladium(Ⅱ) complexes of the ambidentate ligands derived from condensation of the isonitrosoacetylacetone and various diamines, $Ni(IAA)_2-en$, $Ni(IAA)_2-pn$, $Ni(IAA)_2-tn$, $Pd(IAA)_2-en$, PdCl(IAA)-pn, and $Pd(IAA)_2$-tn, where (IAA)$_2$-en, $(IAA)_2$-tn, and (IAA)-pn represent N,N'-enthylenbis(isonitrosoacetylacetone imine), N,N'-propylenebis(isonitrosoacetylacetone imine), N,N'-trimethylenebis(isonitrosoacetylacetone imine) and N-(2-aminopropyl)isonitrosoacetylacetone imine, respectively, have been prepared. The nickel(Ⅱ) and palladium(Ⅱ) complexes were characterized on the bases of the elemental analysis, IR, NMR, and electronic spectra. It is suggested that a isonitroso group of (IAA)$_2$-en or (IAA)$_2$-tn coordinates to the metal ion through the nitrogen atom to form five-membered ring, while the other isonitroso group of (IAA)$_2$-en or (IAA)$_2$-tn coordinates to the metal ion through the oxygen atom to form six membered ring in square-planar complexes of Ni(IAA)$_2$-tn and Pd(IAA)$_2$-en. And two isonitroso groups of (IAA)$_2$-en, (IAA)$_2$-pn, or (IAA)$_2$-tn coordinate to the metal ion through the nitrogen atom to form five-membered rings in square-planar complexes of Ni(IAA)$_2$-en, Ni(IAA)$_2$-pn, and Pd(IAA)$_2$-tn. On the other hand, square-planar PdCl(IAA)-pn is formed by the reaction of propylenediamine with a isonitrosoacetylacetone in the presence of palladium(Ⅱ)ion.

  • PDF

Synthesis and Characterization of Palladium (IV) Complexes with Guanine, Adenine, and Uracil Base (Guanine, Adenine 및 Uracil 염기를 갖는 팔라듐 (IV) 착물의 합성과 그 성질)

  • Oh Sang Oh;Chung Duck Young;Kim Hee Seon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.679-684
    • /
    • 1992
  • New Pd(IV) complexes have been prepared through the reactions of $trans-[Pd(en)_2Cl_2](ClO_4)_2 $(en = ethylenediamine) with Guanine, Adenine, or Uracil anion as purine and pyrimidine base. We identified the ratio of central metal versus ligands by $C{\cdot}H{\cdot}N$ elemental analysis and proposed the coordinating site of the base by infrared spectrum, $^1H-NMR,\; and\; ^{13}C$-NMR spectrum. Guanine or Adenine ligand coordinated at N7 site and an en ligand exchanged for $ClO_4^-$ counter ions of the starting material . As these results, the complexes showed the formula $[Pd(en)L_2(ClO_4)_2](ClO_4)_2{\cdot}(en)$, (L = Guanine, Adenine). But in the Uracil complex no exchange of the en ligand and $ClO_4^-$ occured and Uracil anion preferred the N1 to N3 as coordinating site, the complex $[Pd(en)_2(Urac)_2](ClO_4)_2(Urac = Uracil anion).$

  • PDF