• Title/Summary/Keyword: 금속간 화합물 코팅

Search Result 31, Processing Time 0.036 seconds

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

Development of Metal Oxide-based Photocatalyst Coated on Activated Carbon for Removing Volatile Organic Compounds (휘발성 유기화합물 저감을 위한 금속산화물 기반 광촉매-활성탄 복합체 개발)

  • Jae-Rak, Ko;Yewon, Jang;Ho Young, Jun;Hwan-Jin, Bae;Ju-Hyun, Lee;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Adsorption tower systems based on activated carbon adsorption towers have mainly been employed to reduce the emission of volatile organic compounds (VOCs), a major cause of air pollution. However, the activated carbon currently used in these systems has a short lifespan and thus requires frequent replacement. An approach to overcome this shortcoming could be to develop metal oxide photocatalysis-activated carbon composites capable of degrading VOCs by simultaneously utilizing photocatalytic activation and powerful adsorption by activated carbon. TiO2 has primarily been used as a metal oxide photocatalyst, but it has low economic efficiency due to its high cost. In this study, ZnO particles were synthesized as a photocatalyst due to their relatively low cost. Silver nanoparticles (Ag NPs) were deposited on the ZnO surface to compensate for the photocatalytic deactivation that arises from the wide band gap of ZnO. A microfluidic process was used to synthesize ZnO particles and Ag NPs in separate reactors and the solutions were continuously supplied with a pack bed reactor loaded with activated carbon powder. This microfluidic-assisted pack bed reactor efficiently prepared a Ag-ZnO-activated carbon composite for VOC removal. Analysis confirmed that Ag-ZnO photocatalytic particles were successfully deposited on the surface of the activated carbon. Conducting a toluene gasbag test and adsorption breakpoint test demonstrated that the composite had a more efficient removal performance than pure activated carbon. The process proposed in this study efficiently produces photocatalysis-activated carbon composites and may offer the potential for scalable production of VOC removal composites.

Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature (저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

Review on the Wear behavior of the Hot Stamping Process with Respect to Friction Testing Methods (마찰 방법에 따른 핫스탬핑 마모 거동의 연구 동향)

  • Ji, Min-Ki;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.350-358
    • /
    • 2020
  • Hot stamping is an effective and suitable process widely used in automotive applications, though critical issues such as the transfer of the coating materials and build-up of these materials on tool surfaces have been encountered. Past researches figured out the resultant wear phenomenon using pin-on-disc and drawing (for example, strip drawing and deep drawing) methods to mimic the process and analyzed the wear behavior with respect to the influencing factors such as surface coating, load, and roughness. Although the pin-on-disc is a conventional and widely-used method, it presented a methodological limitation when simulating the hot stamping process by forming a new blank each time, and hence, a drawing-based friction method has been proposed and developed. Each drawing method applies loads in a different way, resulting in a different wear behavior. Notably, the deep drawing process is most similar to the hot stamping process compared to other drawing methods. In this paper we present a review of the friction testing methods mimicking the hot stamping process and the associated wear behavior. This can be helpful in presenting a step-by-step approach and different perspectives on the wear behavior in the hot stamping process.

Effects of Pre-Annealing Treatment on the Combustion Synthesis of Ni3Al Intermetallics Coating (Ni-25at.%Al 금속간화합물의 연소합성반응에 미치는 사전 Annealing 처리의 영향)

  • Lee, Han-Young;Mo, Nam-Kyu
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.62-70
    • /
    • 2021
  • The problem with intermetallics coating using the heat of molten casting is that the heat generated during combustion synthesis dissolves the coating and the substrate metal. This study investigates whether pre-annealing before synthesis can control the reaction heat, with the aim of Ni3Al coating on the casting surface. Therefore, the effects of the annealing temperature and time on the combustion synthesis behavior of the powder compact of Ni-25at%Al after annealing were investigated. As results, the reaction heat when synthesized decreased as the annealing temperature was high and the annealing time was longer. This was attributed to the fact that Al was diffused to Ni particles during low temperature annealing and intermediate Ni-Al compounds were formed during high temperature annealing. After combustion synthesis, however, it was found that their microstructures were almost identical except for the amount of intermediate intermetallics. Furthermore, an annealing temperature above 450℃, at which intermediate compounds begin to form, is needed to prevent the dissolving problem during synthesizing. The intermetallics synthesized after annealing at higher temperature and prolonger annealing time showed a good wear resistance. This might be because much intermediate intermetallics of high hardness were remained in the microstructure.

Effects of Stoichiometry on Properties of NiAl Intermetallics coated on Carbon Steel through Combustion Synthesis (연소합성 코팅된 NiAl 금속간화합물의 화학양론이 미끄럼 마모특성에 미치는 영향)

  • Lee, Han-Young;Lee, Jae-Sung
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The effect of the stoichiometry on the sliding wear properties of NiAl coatings has been investigated. Three different powder mixtures with the compositions of Ni-50at%Al, Ni-54at%Al and Ni-42at%Al were diepressed respectively, and which were subsequently coated on mild steel through combustion synthesis in an induction heating system. Sliding wear behavior of the coatings was examined against an alloyed tool steel using a pin-on-disc type sliding wear test machine. As results, it could be seen that powder mixture(Ni-54at%Al) with displaying Al-rich deviations from the stoichiometry of NiAl(Ni-50at%Al) was promoted the most the synthetic reactivity. The microstructure of the coating layer with the compositions of Ni-54at%Al exhibits the porous NiAl single phase structure. However, the microstructure of the coating layer of the compositions of Ni-42at%Al exhibits the denser multi-phase structure containing several intermediate phases in addition to NiAl. Densification of the coating layer was enhanced by increasing the reacting temperature. On the other hand, the wear properties of the coating layers showed that the wear mode at speeds of around 1 m/s was severe wear, regardless of the stoichiometry and reacting temperature. However, wear properties of coating layer with the compositions of Ni-42at%Al were superior to those of coating layer with the compositions of Ni-54at%Al. This would be attributed by the fact that coating layer with the compositions of Ni-42at%Al develops little void and much intermediate phases with high strength.

Preparation of AI-21Ti-23Cr High Temperature Protective Coating for TiAo Intermatallic Compounds by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 금속간화합물 TiAI 모재위의 AI-21Ti-23Cr 고온내산화코팅)

  • Park, Sang-Uk;Park, Jeong-Yong;Lee, Ho-Nyeon;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.742-751
    • /
    • 1996
  • Ti-48Al(at.%) specimens were coated with Al-21Ti-23Cr(at.%) film by RF magnetron sputtering. Ti-48Al specimen coated at 200, 0.8Pa and 573K showed the best oxidation resistance property in the isothermal oxidation test. Al-21Ti-23Cr film was amophous after depostion, but crystallized and fromed a protective ${Al}_{2}{O}_{3}$ layer on the surface during oxidation. Ti-48Al specimens coated at 573K have been sassessed by isothermal oxidation test for 100 hours at 1073K, 1173K and 1273K. The mass gain curves showed that parabolic stage continued at al tested temperature range in isothermal oxidation test, and the excellent oxidation resistance is attriutable to the formation of a protective ${Al}_{2}{O}_{3}$ layer on the surface of Al-21Ti-23Cr film. After oxidation test at 1273K, the matrix of Al-21Ti-23Cr film had transformed into TiAlCr phase due to the depletion of Al during oxidation and the diffusion of Ti from the substrate, and the extent of mass gain of the specimen increased compared with that of specimens tested at lower temperature.

  • PDF

Spark plasma sintering 소결법에 의해 제작 된 Ti-Al-Si 합금타겟의 물성과 합금타겟을 이용하여 제작한 박막에 관한 연구

  • Lee, Han-Chan;Jeong, Deok-Hyeong;Mun, Gyeong-Il;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.1-237.1
    • /
    • 2013
  • Ti 와 Al 은 금속간의 화합물이 내산화성에 우수한 성질을 가지고 있으며 낮은 밀도와 고온에도 큰 변화가 없는 성질을 가지고 있다. 그리하여 내식 및 부식 관련 연구나 고온재료를 필요로 하는 우주, 엔진 제품 등에 많은 연구가 진행되고 있다. 또한 Ti-Al-N 박막은 경도가 우수하여 고속 공구 부품에 널리 사용되고 있으며 최근 Ti-Al-N 에 Si 첨가로 인하여 40 GPa 이상의 고경도와 1,000도 이상의 산화온도를 지닌 나노 혼합물 코팅을 형성 시키는 것으로 알려져 있다. 본 연구에서는 Ti, Al, Si 원분말을 PBM (Planetary Ball Milling) 방법을 사용하여 Ti-Al-Si 혼합분말로 제조하고, 제조된 분말들은 SPS (Spark Plasma Sintering) 공정을 통하여 Ti-Al-Si 합금타겟을 제작하였다. 제작된 Ti-Al-Si 합급타겟을 사용한 Sputtering 공정을 수행하여 Ti-Al-Si 3원계 박막을 증착하였다. 그 결과 기존 Ti (82 ${\mu}m$), Al (32 ${\mu}m$), Si (16 ${\mu}m$) 크기의 원분말들이 PBM (Planetary Ball Milling) 공정 후 Ti-Al-Si (18 ${\mu}m$) 로 입도가 작아진 것을 확인 할 수 있었고, 소결 후 타겟이 99% 이상의 높은 밀도를 가졌으며 원분말의 조성과 동일한 조성을 가진 타겟이 제작되었음을 확인하였다. Ti-Al-Si 타겟의 경도는 약 1,000 Hv 이상의 값을 보였으며, Ti-Al-Si-N 박막의 경우 타겟의 조성과 동일하였고 경도는 약 35 GPa 로 높은 경도 값을 가지는 것을 확인하였다. 내산화 테스트 결과 Ti-Al-Si-N 박막은 1,000도 에서도 박막의 손상이 가지 않았다.

  • PDF

Effect of Reflow Number on Mechanical and Electrical Properties of Ball Grid Array (BGA) Solder Joints (BGA 솔더 접합부의 기계적.전기적 특성에 미치는 리플로우 횟수의 효과)

  • Koo, Ja-Myeong;Lee, Chang-Yong;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.71-77
    • /
    • 2007
  • In this study, the mechanical and electrical properties of three different ball grid array (BGA) solder joints, consisting of Sn-37Pb, Sn-3.5Ag and Sn-3.5Ag-0.75Cu (all wt.%), with organic solderability preservative (OSP)-finished Cu pads were investigated as a function of reflow number. Based on scanning electron microscopy (SEM) analysis results, a continuous $Cu_6Sn5$, intermetallic compound (IMC) layer was formed at the solder/substrate interface, which grew with increasing reflow number. The ball shear testing results showed that the shear force peaked after 3 reflows (in case of Sn-Ag solder, 4 reflows), and then decreased with increasing reflow number. The electrical property of the joint gradually decreased with increasing reflow number.

  • PDF

Effect of MeOH/IPA Ratio on Coating and Fluxing of Organic Solderability Preservatives (유기 솔더 보존제의 코팅 및 플럭싱에 대한 메탄올/이소프로필알콜 비율의 영향)

  • Lee, Jae-Won;Kim, Chang Hyeon;Lee, Hyo Soo;Huh, Kang Moo;Lee, Chang Soo;Choi, Ho Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.402-407
    • /
    • 2008
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservative (OSP) in order to improve the stability and the reliability of final product. Since current organic solder preservatives have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to investigate the effect of MeOH/IPA (Isopropyl alcohol) ratio on the fluxing of a new OSP, developed in previous research, andto find out an optimum formulation of flux components for the application of the OSP in current packaging process. As a result of this study, it was revealed that higher MeOH/IPA ratio in flux showed better performance of fluxing a new OSP.