• Title/Summary/Keyword: 근접탐지

Search Result 59, Processing Time 0.022 seconds

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach (FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석)

  • Ryu, Hee-Hwan;Bae, Joo-Yeol;Song, Ki-Il;Lee, Sang-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.75-91
    • /
    • 2023
  • In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.

Damage Detection of Structures using Peak and Zero of Frequency Response Functions (주파수 응답함수의 피크와 제로를 이용한 구조물의 손상탐지)

  • Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.69-79
    • /
    • 2007
  • In this paper, a technique to detect structural damage and estimate its severity using peaks and zeros of frequency response functions (FRFs) is developed. The peaks in FRFs represent the natural frequencies of the structure and the zeros provide additional information. The characteristics of peaks and zeros are defined and the calculation procedure to obtain the peaks and zeros from the relationship between frequency response function and stiffness and mass matrices are clearly explained. A structural system identification theory which is utilizing the sensitivity of stiffness of a structural member to eigenvalues, i.e., peaks and zeros, is established. The proposed method can identify damage location and its severity, with natural and zero frequencies, by estimating structural stiffness of the structure in the process of making a analytical model The accuracy and feasibility is demonstrated by numerical models of a spring-mass system and a beam structure.

Development of Planar Active Phased Array Antenna for Detecting and Tracking Radar (화포탐지 레이다용 C-대역 평면형 능동위상배열 안테나 개발)

  • Kim, Ki-Ho;Kim, Hyun;Kim, Dong-Yoon;Jin, Hyung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.924-934
    • /
    • 2018
  • This paper describes the development and measurement results of C-band planar active phase array antenna for detecting and tracking radar(weapon-locating radar). The antenna is designed with 14 sub-arrays(12 main channels and 2 sidelobe blanking channels and approximately 3,000 elements of transmit-receive channel) to generate transmit and digital receive patterns. Using a near-field measurements facility, G/N, transmit patterns, and received patterns are measured. Receive patterns are implemented with digital beamforming by signal processing. The measurement results demonstrate that antenna design specifications were fulfilled.

Real-time Obstacle Detection and Avoidance Path Generation Algorithm for UAV (무인항공기용 실시간 장애물 탐지 및 회피 경로 생성 알고리즘)

  • Ko, Ha-Yoon;Baek, Joong-Hwan;Choi, Hyung-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.623-629
    • /
    • 2018
  • In this paper, we propose a real-time obstacle detection and avoidance path generation algorithm for UAV. 2-D Lidar is used to detect obstacles, and the detected obstacle data is used to generate real-time histogram for local avoidance path and a 2-D SLAM map used for global avoidance path generation to the target point. The VFH algorithm for local avoidance path generation generates a real-time histogram of how much the obstacles are distributed in the vector direction and distance, and this histogram is used to generate the local avoidance path when detecting near fixed or dynamic obstacles. We propose an algorithm, called modified $RRT^*-Smart$, to overcome existing limitations. That generates global avoidance path to the target point by creating lower costs because nodes are checked whether or not straight path to a target point, and given arbitrary lengths and directionality to the target points when nodes are created. In this paper, we prove the efficient avoidance maneuvering through various simulation experiment environment by creating efficient avoidance paths.

Analysis of Stability Indexes for Lightning by Using Upper Air Observation Data over South Korea (남한에서 낙뢰발생시 근접 고층기상관측 자료를 이용한 안정도 지수 분석)

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.467-482
    • /
    • 2010
  • In this study, characteristics of various stability indexes (SI) and environmental parameters (EP) for the lightning are analysed by using 5 upper air observatories (Osan, Gwangju, Jeju, Pohang, and Baengnyeongdo) for the years 2002-2006 over South Korea. The analysed SI and EP are the lifted index, K-index, Showalter stability index, total precipitable water, mixing ratio, wind shear and temperature of lifting condensation level. The lightning data occurred on the range of -2 hr~+1 hr and within 100 km based on the launch time of rawinsonde and observing location are selected. In general, summer averaged temperature and mixing ratio of lower troposphere for the lightning cases are higher about 1 K and $1{\sim}2gkg^{-1}$ than no lightning cases, respectively. The Box-Whisker plot shows that the range of various SI and EP values for lightning and no lightning cases are well separated but overlapping of SI and EP values between lightning and no lightning are not a little. The optimized threshold values for the detection of lightning are determined objectively based on the highest Heidke skill socre (HSS), which is the most favorable validation parameter for the rare event, such as lightning, by using the simulation of SI and EP threshold values. Although the HSS is not high (0.15~0.30) and the number and values of selected SI and EP are dependent on geographic location, the new threshold values can be used as a supplementary tool for the detection or forecast of lightning over South Korea.

A Direction Finding Proximity Fuze Sensor for Anti-air Missiles (방향 탐지용 전파형 대공 근접 신관센서)

  • Choi, Jae-Hyun;Lee, Seok-Woo;An, Ji-Yeon;Yeom, Kyung-Whan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.613-621
    • /
    • 2013
  • This paper presents the direction finding proximity fuze sensor using the clutter rejection method and the adaptive target detection algorithm for anti-air missiles. To remove effects by clutter and detect a target accurately, the clutter rejection method of Legendre sequence with BPSK(Bi phase Shift Keying) modulation has been proposed and the Doppler signal which has cross correlation characteristics is obtained from reflected target signals. Considering the change of the Doppler signal, the adaptive target detection algorithm has been developed and the direction finding algorithm has been fulfilled by comparing received powers from adjacent three receiving antennas. The encounter simulation test apparatus was made to collect and analyze reflected signal and test results showed that the -10 dBsm target was detected over 10 meters and the target with mesh clutter was detected and direction was distinguished definitely.

Real Time Discrimination of 3 Dimensional Face Pose (실시간 3차원 얼굴 방향 식별)

  • Kim, Tae-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

  • PDF

A Study on Optimal Hydrophone Arrangement for The Direction Finding of High Speed Moving Target in Underwater (수중에서 고속 기동하는 표적의 방위 탐지를 위한 최적의 청음기 배치 연구)

  • Han, Min-Su;Choi, Jae-Yong;Kang, Dong-Seok;Son, Kweon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.369-375
    • /
    • 2017
  • One of good DF(Direction Finding) methods is based on TDOA(Time Difference of Arrival) estimation when finding underwater moving target. For small DF error, high time resolution A/D(Analog-to-digital) conversion board and long baseline are needed. But the result of sea trial about close-range and high speed moving target, spatial correlation coefficient and appeared poor properties below 0.3 when hydrophone arrangement are separated over 6 ${\lambda}$ because of underwater fading channel. And we also find out that the distance between hydrophone should be under 4 ${\lambda}$ apart to take advantage of spatial correlation coefficient gain and performance of DF in underwater moving channel environments.

Real Time 3D Face Pose Discrimination Based On Active IR Illumination (능동적 적외선 조명을 이용한 실시간 3차원 얼굴 방향 식별)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.727-732
    • /
    • 2004
  • In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

Malware farm using accelerated virtual machines (시계가 가속된 가상머신을 이용한 악성코드 인큐베이터)

  • Suh, Hee-Won;Choi, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.230-232
    • /
    • 2012
  • 악성코드인지의 가부가 나지 않은 실행 파일이 언제, 어떻게 동작하는지 여부를 판단과 수집을 위해 분석가들은 악성코드에 노출되기 쉬운 환경으로 조성된 PC를 이용하여 악성코드를 수집, 분석을 해왔다.이러한 PC를 악성코드의 인큐베이터라고도 할 수 있겠다. 이러한 PC를 두는 것은 시간 등에 큰 제약을 받게 되며, 분석이 쉬운 환경이 아니다. 이러한 환경 개선을 위해서 앞선 분석가들은 샌드박스 형태의 도구를 이용하고자 했다. 하지만 샌드박스 형태의 도구는 굉장히 제한적인 기능만을 제공하고 악성코드의 가부가 결정된 실행 파일에게만 적용시킬 수 있는 등의 단점을 가지고 있었다. 이 후 제안된 방법은 실제 PC와 근접한 수준의 환경을 제공하는 가상 PC이다. 이러한 가상 PC는 분석자에게 많은 편의를 제공하였으나 시간적인 부분에서 가지는 제한점은 기존과 동일하다. 본 논문에서는 가상 PC 분석 환경에서 시계를 가속하여 이러한 시간적인 부분에 대해 분석시간을 단축할 수 있는 방법을 제안한다. 이 방법을 적용할 경우 특정 시기 혹은 특정 시간 뒤에 동작하는 악성 코드의 활동시기와 조건을 가속한 시간만큼 단축하여 확인할 수 있다. 즉, PC를 감염시킨 뒤에 48시간이 지난 뒤에 공격 활동을 시작하는 악성코드가 시계를 2배로 가속하는 가상머신이라면 24시간 뒤에 행위를 탐지할 수 있다.