• Title/Summary/Keyword: 근접발파

Search Result 70, Processing Time 0.016 seconds

Analysis and Evaluation of the Effect of Blast-induced Vibration Adjacent to Industrial Facilities (산업시설 근접발파 시 발파진동 영향 분석 및 평가)

  • Kawk, Chang Won;Park, Inn Joon;Kim, Young Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.459-468
    • /
    • 2023
  • Power plant is a kind of basic industrial facility and might cause fatal industrial and human damage. In this study, the characteristics and effect of blast-induced vibration for tunnelling which underpass ○○ power plant in operation were evaluated. Previous blasting cases adjacent to industrial facilities were intensively reviewed, then allowable vibration criteria were suggested. 3 dimensional dynamic numerical analysis based on finite element method was performed to investigate particle velocity and resonance was examined by calculating the predominant frequencies. As a result, particle velocity at pump foundation which is nearest to the source was approached to the allowable criteria, therefore, the modified blasting pattern was newly suggested and confirmed the attenuation effect based on the test blasting. Consequently, appropriated decision-support procedure was established in case of adjacent blasting to industrial facilities.

Study on the Effect of Near Blasting to Earth Retaining Wall by Measuring Underground Vibrations (지중진동 측정을 통한 흙막이 근접발파 영향 연구)

  • Cho, Lae Hun;Jeong, Byung Ho
    • Explosives and Blasting
    • /
    • v.33 no.4
    • /
    • pp.14-24
    • /
    • 2015
  • We conducted test blasting in 3 sites to identify the effect on safety of the earth retaining wall by near blasting vibration. As a test result, we confirm that underground structures(earth anchor et al.) are relatively safer than surface structures as the underground vibration is 10~52% of surface vibration at a same distance. We derived surface and underground vibration prediction equations by regression analysis of measured 3 sites' surface and underground vibration PPV. Also we calculated minimum separation distance by blasting pattern about underground and surface curing concrete. Unless any discontinuity which are unsafe on the earth retaining wall appear, blasting work using under 2.4kg per delay is not meaningful to the earth retaining wall's safety as the result of measuring near blasting vibration, confirming change the earth retaining wall's instrument, and observation of structural deformation.

Electronic Blasting for Excavating Single Line Railway Tunnel Close to Residential Area (보안물건이 근접한 소단면 철도 단선터널 굴착시 전자발파 시공사례)

  • Lee, Min Su;Kim, Hee Do
    • Explosives and Blasting
    • /
    • v.34 no.3
    • /
    • pp.17-20
    • /
    • 2016
  • This paper introduce a multistage parallel non-vibration electronic tunnel blasting cases which adapts Electronic Blasting System(EBS) and the center-cut blasting method to excavating a single line railway tunnel close to residential area. As a result, it was revealed that the vibration and noise showed a reduction of 23.5% and 75% of compared with the allowable standard. We successfully completed the tunnel excavation with decreasing construction time and construction cost and without civil compliant.

A Blasting Experience in a Shallow Tunnel Section Overlain by Residential Structures (터널 상부 근접시설물 통과구간의 발파시공사례)

  • Won, Yeon-Ho;Kang, Choo-Won;Kim, Joung-In
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • This study, to reduce a ground vibration damage of the structures in an area adjacent to housing structures located closely above the tunnel section, is the ground vibration reduction instance of a tunnel blasting selectively applied the ground vibration-controlled blasting method (delay time applied blasting method, large center hole cut method, Line Drilling method, etc) with an originally planned blasting method connected, but with it's workability and economic efficiency is satisfactory, so, the results says the ground vibration-controlled blasting method on a similar condition is very effective, even if the applicability is depend on the blasting method and ground condition of the work area.

Norwegian Underwater Tunnel Piercing (노르웨이의 수중수로관통 발파 기술)

  • 김민규
    • Explosives and Blasting
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • 수중수로관통 발파는 수로터널을 호수 바닥에 근접하도록 터널을 뚫고 최종적으로 플러그를 발파하여 수로와 호수 바닥을 연결시키는 발파 기술로서 수력발전에서 경비와 공기를 단축시킬 수 있는 매우 유용한 기술이다. 이 기술은 본질적으로는 수중발파와 동일하지만 완벽한 성공을 보장하기 위한 별도의 조치를 해야하고 수갱의 수문과 여타의 설비를 보전할 수 있는 대책을 강구하여야 한다. 논문에서는 노르웨이에서는 보편화되어 있는 이 기술의 핵심 내용과 적용의 예를 실어 소개하고자 한다.

Railway Tunnel Blasting Design adjacent to the Existing "Live" Tunnel (운행중인 철도 터널에서의 근접 발파 설계)

  • Kim, Dal-Sun;Lee, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.404-409
    • /
    • 2001
  • 현대건설(주)은 중앙선 (덕소 ∼ 양수) 복선 전철공사 실시설계 입찰을 위한 일련의 조사 및 설계를 수행하였다. 본 논문은 사업 구간에 속해 있는 월문터널에 대한 설계를 수행하는 과정에서 현재 기존 노선이 운행되는 있는 단선 터널에 근접한 지역에서 공사 중에 운행되고 있는 열차의 안정성을 확보하기 위한 기초 조사를 선행하였다. 본 논문의 목적은 현재 국내에서 시행되고 있는 근접 터널 시공 문제에서 (특히, 화약 발파에 의한 터널 설계 및 시공) 문제시되고 있는 적절한 진동제어에 대한 수치가 필요 이상으로 적용되고 있다는 점에 대하여 향후, 경제적이고 도전적인 설계를 위한 제시를 하기 위함에 있다.

  • PDF

Characteristics of Near-field Ground Vibration in Tunnel Blasting using Electronic Detonators (전자뇌관을 이용한 터널발파의 근거리 지반진동 특성)

  • Kim, Yong-Pyo;Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon;Kim, Hee-Do;Lee, Jun-Won
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.76-86
    • /
    • 2013
  • In order to control tunnel blast vibration for adjacent facilities using electronic detonator, Understanding about the characteristics of near-field ground vibration is necessary. The purpose of this paper is to analyze effects of Cut-area and Extension-area vibration in relation to decision of tunnel blast vibration. These data were obtained at the top monitoring positions while ${\bigcirc}{\bigcirc}{\bigcirc}$ tunnel site of "Wonju~Gangneung double railroad section ${\bigcirc}{\bigcirc}$ construction" was passing under the existing road. Thus, tunnel blasting was conducted by tunnel electronic blasting system with 0.01% high delay-time accuracy. It can be possible that not only keeping maximum charge per delay-time but also preventing amplification of vibration which is occurred by delay-time scatter using common detonators. Additionally, V-Cut was changed into Burn-Cut. The results was presented that vibration level of extension-holes were higher than Cut-holes. Therefore, near-field ground vibration can be effectively minimized using electronic detonators in the Cut area. And also more effective way to reduce tunnel blast vibration is full-face blast using electronic detonators.