• Title/Summary/Keyword: 극한 해상환경조건

Search Result 10, Processing Time 0.029 seconds

Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change (극한 조건과 기후변화를 고려한 2차원 및 3차원 해안 도시 침수 해석)

  • Jaehwan Yoo;Sedong Jang;Byunghyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.126-126
    • /
    • 2023
  • 최근 대한민국에서는 기후변화로 전국 각지에서 돌발성 호우와 태풍의 강도 및 발생빈도가 높아지고 있다. 이에 따라 주요 국가시설이 위치한 해안 도시의 2차원 3차원 모형을 통해 극한 조건하 침수 분석을 수행하였다. 먼저 해양수산부 "2019년 전국 심해설계파 보고서"를 기반으로 극치분포 중 Weibull 분포를 이용하여 극한 조건, 1,000년부터 1,000,000년 빈도의 재현기간의 파도 높이와 풍속을 계산하였다. 계산 결과를 SWAN(Simulating WAves Nearshore)의 입력값으로 해상에서 100m 간격의 파고 높이를 계산하였다. 이때 100m 간격으로는 방파제 지형을 정확히 해석하지 못하였기에, 상세파고 계산을 위한 Nesting 기법을 이용하여 20m 간격의 파고 결과를 도출하였고, 해안 도시 인근 해상에서 10.916m의 파고를 예측하였다. 또한, 예측된 파고를 이용해 EurOtop(2018) 매뉴얼의 경험식을 기반으로 연구 유역으로 유입되는 월류량 계산에 사용하였다. 결과로 16방위 중 SSE 방향, 1,000,000년 빈도 재현기간 조건에서 0.0306cms/m의 월파량을 예측했다. 예측된 자료를 바탕으로 2차원 침수해석은 FLO-2D 모형, 3차원 침수해석은 FLOW-3D 모형을 이용하였다. 2차원 침수해석 결과 주요 지점에서 0.18~0.33m의 침수가 예상되었고 3차원 침수해석 결과 동일한 지점에서 0.240~0.333m의 침수가 예상되었다. 모의 결과 2차원과 3차원 모형 간 침수 예측 결과가 0.3cm에서 6.1cm의 차이를 나타내어 모형 구축이 합리적으로 이뤄졌다고 판단하였으며 연구 유역에서는 침수가 예상된다는 결과를 도출하였다. 본 연구를 통해 기후변화에 따른 해안에 위치한 주요 도시지역과 국가 주요 시설물에 대한 침수해석을 실시하였고 분석결과를 생명과 재산을 보호하기 위한 대피계획 등 재난예방대책 수립에 활용할 수 있음으로 예상된다.

  • PDF

Design of Oceanography Buoy - Part I: Structural Integrity of Hull (해양관측용 부이의 설계 건전성 평가 - Part I: 실해역 조건 하의 부이 선체 구조건전성 평가)

  • Kim, Tae-Woo;Keum, Dong-Min;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • An evaluation of the structural integrity of an oceanographic buoy subjected to extreme loads was carried out in this study. Load components, such as the current, waves, and wind load, which were required for the sea's environmental conditions, were calculated precisely. A non linear finite element analysis was conducted to elucidate the structural response of the buoy under extreme environmental conditions. Based on the surface drift velocity scheme, a dynamic impact analysis was also carried out for the case of collision accidents. The proposed numerical technique would be a useful and cost effective tool for design scheme evaluation in the field of oceanographic buoys.

Ultimate Limit State Risk Assessment of Penta Pod Suction Bucket Support Structures for Offshore Wind Turbine due to Scour (세굴에 기인한 해상풍력터빈 펜타팟 석션버켓 지지구조물의 극한한계상태 위험도 평가)

  • Kim, Young Jin;Vu, Ngo Duc;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.374-382
    • /
    • 2021
  • The scour risk assessment was conducted for ultimate limit state of newly developed penta pod suction bucket support structures for a 5.5 MW offshore wind turbine. The hazard was found by using an empirical formula for scour depth suitable for considering marine environmental conditions such as significant wave height, significant wave period, and current velocity. The scour fragility curve was calculated by using allowable bearing capacity criteria of suction foundation. The scour risk was assessed by combining the scour hazard and the scour fragility.

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

Evaluation of Horizontal Load and Moment Capacities of Bucket-Type Offshore Wind Turbine Foundation (버켓형식 해상풍력기초의 수평 하중과 모멘트 저항력 평가)

  • Bagheri, Pouyan;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Owing to economically efficient and easy installation, bucket foundation is a promising solution for offshore wind turbines. This paper aims at finding the behavior of suction caissons and soil surrounding the foundation by using three-dimensional finite element analysis. Under various loading conditions, a wide range of foundation geometries installed in dense and medium dense sandy soil was considered to evaluate ultimate horizontal load and overturning moment capacity. The results show that the rotation and displacement of the bucket due to monotonic loading are largely dependent on the foundation geometry, soil density and load eccentricity. Normalized diagrams and equations for the ultimate horizontal load and overturning moment capacities are presented that are useful tool for the preliminary design of such foundation type.

Basic Data Analysis on Bio Block Placement for Sea grass Field in the Enclosed Bay (반폐쇄해역에서의 잘피장 조성 바이오블록 거치의 기초자료 분석)

  • Ahn, HyoJae;Lee, JoongWoo;Kang, SeokJin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.183-185
    • /
    • 2015
  • 반폐쇄해역에서는 해수교환이 어렵고 육상에서 유입부하와 적조 등의 영향을 강하게 받기 때문에 항상 수질과 저질이 악화되기 쉬운 환경에 처해 있어서 이의 개선을 위한 일환으로 해양식물(잘피)의 서식환경을 복원하여 해양정화에 기여하기 위한 친환경적 접근이 필요하다. 다양한 해상환경조건하에서 잘피의 서식은 변화므로 특히, 파랑의 극한 외력여건에 견디는 친환경 잘피 지지구조물 기술개발이 우선되어야 한다. 본 연구는 잘피장 조성의 기반기술로 해양식생 지지용 바이오 블록을 개발하고 특히, 관광지 및 해양클러스터 단지로 대외적으로 알려져 있는 영도해역에서 영도구가 야심차게 준비해오고 있는 해상낚시터 인근해역에 적용할 수 있는 바이오 블록의 현장시범거치를 통해 잘피 등 해양식생을 유도하기 기반을 마련하기 위한 기초연구로 대상구역에서의 파랑해석과 식생 조성 후에 파랑의 반응특성을 수치모델을 통해 분석하고자 하였다. 계산 결과는 대상지역에 적용할 사면 피복재로 바이오 블록의 규격을 결정하는데 반영될 것이며 후속 연구에서 실제블록의 제작과 현장거치를 수행하고자 한다.

  • PDF

Transient Effects of Wind-wave Hybrid Platform in Mooring Line Broken Condition (부유식 파력-해상풍력 복합발전 구조물의 계류선 손상 시 과도 응답 해석)

  • Bae, Yoon Hyeok;Lee, Hyebin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.129-136
    • /
    • 2016
  • Floating offshore structures keep its position by a mooring system against various kind of environmental loadings. For this reason, a reliable design of the mooring system is a key factor for initial design stage of a floating structure. However, there exists possibility of mooring failure, even the system is designed with enough safety margin, due to the unexpected extreme environmental conditions or long-term fatigue loadings. The breaking of one of the mooring lines may change the tension level of the other mooring lines, which can potentially result in a progressive failure of the entire structure. In this study, time domain numerical simulation of 10MW class wind-wave hybrid platform was carried out with partially broken mooring line. Overall platform responses and variations of the mooring line tension were numerically evaluated.

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions (대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구)

  • Kim, Kyong Hwan;Hong, Jang Pyo;Park, Sewan;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2016
  • The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.

Design of Submarine Cable for Capacity Extension of Power Line (전력선 용량증대를 위한 해저케이블 설계)

  • Son, Hong-Chul;Moon, Chae-Joo;Kim, Dong-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2022
  • A submarine power cable is a transmission cable for carrying electric power below the surface of the water. Recently, submarine cables transfer power from offshore renewable energy schemes to shore, e.g. wind, wave and tidal systems, and these cables are either buried in the seabed or lie on the ocean floor, depending on their location. Since these power cables are used in the extreme environments, they are made to withstand in harsh conditions and temperatures, and strong currents. However, undersea conditions are severe enough to cause all sorts of damage to offshore cables, these conditions result in cable faults that disrupt power transmission. In this paper, we explore the design criteria for such cables and the procedures and challenges of installation, and cable transfer splicing system. The specification of submarine cable designed with 3 circuits of 154kV which is composed of the existing single circuit and new double circuits, and power capacity of 100MVA per cable line. The determination of new submarine cable burial depth and cable arrangement method with both existing and new cables are studied. We have calculated the permission values of cable power capacity for underground route, the values show the over 100MW per cable line.