• Title/Summary/Keyword: 극한 강우량

Search Result 102, Processing Time 0.025 seconds

Derivation of intensity-duration-frequency(IDF) curves based on AR6 SSP climate change scenario (AR6 SSP 기후변화 시나리오 기반 미래 IDF 곡선 산출)

  • Yu, Jae-Ung;Park, Moon Hyung;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.57-57
    • /
    • 2022
  • 국내의 댐·하천 설계기준은 다양한 수자원 시설물 설계 시에 활용되고 있으나, 강우사상에 대한 분석은 과거의 강우 사상에 대한 통계분석에 따라 수행되어 기후변화의 영향을 고려하지 않고 있다. 또한, 하천 설계기준에서는 홍수량 산정에 대한 방안을 명시한 바에 따르면, 홍수량 산정 표준지침에서 활용하는 빈도해석을 활용하는 방안 또는 강우-유출모형을 활용한 방안을 제시하고 있으나, 홍수량 산정 표준지침 역시 미래 강수 변화에 대한 구체적인 방안을 반영하지 않고 있는 실정이다. 전 세계적인 기후변화는 국내의 기후변동성을 증가시켜 극한강우사상의 빈도와 강도를 증대시키므로 이를 고려한 미래강우에 대한 분석이 필요한 시점이다. 일반적으로 기후 전망에 활용되는 전지구 모델(Global Climate Model; GCM)은 한반도의 복잡한 지형을 고려하기 어려우므로 지역적인 강제력을 보다 효과적으로 고려하기 위하여 지역기후모델(Regional Climate Model; RCM)을 사용하고 있다. 역학적으로 상세화 된 RCM은 비교적 고해상도의 자료를 제공하고 있으나, 강수량을 전반적으로 과소 추정하는 것으로 알려지고 있다. 본 연구에서는 지속시간 1-24시간 연최대 강우량(annual maximum rainfalls; AMRs)과 역학적 상세화 된 SSP 시나리오 일 자료를 활용하며, Copula 함수 기반의 상세화 모형을 통해 Sub-Daily 정보를 시간적으로 상세화 하였다. 최종적으로 이를 활용하여 미래 IDF 곡선을 유도하였다. 산정된 IDF 곡선 결과를 활용하여 기후변화의 영향을 고려한 설계강수량 변화량을 정량적으로 제시하고자 한다.

  • PDF

Developing Extreme Drought Scenarios for Seoul based on the Long Term Precipitation Including Paleoclimatic Data (고기후 자료를 포함한 장기연속 강수자료에 의한 서울지역의 극한가뭄 시나리오 개발)

  • Jang, Ho-Won;Cho, Hyeong-Won;Kim, Tae-Woong;Lee, Joo-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.659-668
    • /
    • 2017
  • In this study, long-term rainfall data of more than 300 years including the paleoclimatic rainfall data from Chuk Woo Kee (1777-1907), the modern observed rainfall data (1908-2015), and the climate change scenario (2016-2099), which were provided by KMA (Korea Meteorological Agency), was used to analyze the statistical characteristics of the extreme drought in the Seoul., Annual average rainfall showed an increasing trend over a entire period, and Wavelet transform analysis of SPI (Standardized Precipitation Index) which is meteorological drought index, showed 64 to 80 months (5-6 Year) of drought periods for Chuk Woo Kee and KMA data, 96 to 128 months (8 to 10 years) of drought period for climate change data. The dry spell analysis showed that the drought occurrence frequency in the ancient period was high, but frequency was gradually decreased in the modern and future periods. In addition, through the analysis of the drought magnitude, 1901 was the extreme drought year in Seoul, and 1899-1907 was the worst consecutive 9 years long term drought in Seoul.

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

Flood inflow forecasting on HantanRiver reservoir by using forecasted rainfall (LDAPS 예측 강우를 활용한 한탄강홍수조절댐 홍수 유입량 예측)

  • Yu, Myungsu;Lee, Youngmok;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.327-333
    • /
    • 2016
  • Due to climate changes accelerated by global warming, South Korea has experienced regional climate variations as well as increasing severities and frequencies of extreme weather. The precipitation in South Korea during the summer season in 2013 was concentrated mainly in the central region; the maximum number of rainy days were recorded in the central region while the southern region had the minimum number of rainy days. As a result, much attention has been paid to the importance of flood control due to damage caused by spatiotemporal intensive rainfalls. In this study, forecast rainfall data was used for rapid responses to prevent disasters during flood seasons. For this purpose, the applicability of numerical weather forecast data was analyzed using the ground observation rainfall and inflow rate. Correlation coefficient, maximum rainfall intensity percent error and total rainfall percent error were used for the quantitative comparison of ground observation rainfall data. In addition, correlation coefficient, Nash-Sutcliffe efficiency coefficient, and standardized RMSE were used for the quantitative comparison of inflow rate. As a result of the simulation, the correlation coefficient up to six hours was 0.7 or higher, indicating a high correlation. Furthermore, the Nash-Sutcliffe efficiency coefficient was positive until six hours, confirming the applicability of forecast rainfall.

Spatial Patterns of Urban Flood Vulnerability in Seoul (도시 홍수 취약성의 공간적 분포 - 서울 지역을 중심으로 -)

  • Kim, Jisoo;Sung, Hyo Hyun;Choi, Gwangyong
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.615-626
    • /
    • 2013
  • In this study, spatial patterns of the urban flood vulnerability index in Seoul are examined by considering climate exposure, sensitivity, and adaptability associated with floodings for recent 5 year (2006~2010) period by the smallest administrative unit called Dong. According to the results of correlation analyses based on the IPCC(Intergovernmental Panel on Climate Change)'s vulnerability model, among many variables associated with urban flooding, rainwater tank capacity, 1-day maximum precipitation and flood pumping station capacity have statistically-significant, and relatively-high correlations with the number of flood damage in Seoul. The flood vulnerability map demonstrates that the extensive areas along Anyang and Joongnang streams show relatively high flood vulnerability in Seoul due to high sensitivity. Especially in case of Joongnang stream areas, climatic factors also contribute to the increase of flood vulnerability. At local scales, several Dong areas in Gangdong-gu and Songpa-gu also show high flood vulnerability due to low adaptability, while those in Gangnam-gu do due to high sensibility and climate factor such as extreme rainfall events. These results derived from the flood vulnerability map by Dong unit can be utilized as primary data in establishing the adaptation, management and proactive policies for flooding prevention within the urban areas in more detail.

  • PDF

Introduction to the production procedure of representative annual maximum precipitation scenario for different durations based on climate change with statistical downscaling approaches (통계적 상세화 기법을 통한 기후변화기반 지속시간별 연최대 대표 강우시나리오 생산기법 소개)

  • Lee, Taesam
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1057-1066
    • /
    • 2018
  • Climate change has been influenced on extreme precipitation events, which are major driving causes of flooding. Especially, most of extreme water-related disasters in Korea occur from floods induced by extreme precipitation events. However, future climate change scenarios simulated with Global Circulation Models (GCMs) or Reigonal Climate Models (RCMs) are limited to the application on medium and small size rivers and urban watersheds due to coarse spatial and temporal resolutions. Therefore, the current study introduces the state-of-the-art approaches and procedures of statistical downscaling techniques to resolve this limitation It is expected that the temporally downscaled data allows frequency analysis for the future precipitation and estimating the design precipitation for disaster prevention.

Development of Priority Assessment Model for Recovery from Urban Flooding considering Lifelines with Resilience (도심지 라이프라인을 고려한 도시침수피해 복구우선순위 산정모델 개발)

  • Hyung Jun Park;Chan Jin Jung;Dong Hyun Kim;Seung Oh Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.21-21
    • /
    • 2023
  • 현재 구축되어있는 방재시설의 능력은 기후위기로 인해 수용가능한 극한강우량의 범위를 넘어서고 있어 대형화된 홍수로 인한 피해가 꾸준히 발생하고 있다. 이로 인해 잠재적 홍수로 인한 도시회복도 관리와 홍수로 수반되는 피해에 대한 복구의 중요도가 높아지고 있다. 회복도는 도시의 재해 취약성, 저항, 적응, 복구, 완화에 대한 능력을 포괄하는 개념으로써 최근 주목받고 있는 개념이지만 대부분의 연구는 주로 시설에 대한 회복도 평가가 이루어지고 있다 (Sen et al.,2021). 또한 재해 후 도시복구에 관한 연구는 다수 존재하지만 복구에 따른 지역의 회복도 변화와 라이프라인과 같은 주요 시설의 복구에 따른 회복도 차이를 고려한 연구는 미비한 실정이다. 따라서 본 연구에서는 도시침수 발생 후 라이프라인을 고려한 도시복구 우선순위 산정모델을 개발하고 재해관리의 효율성 향상측면에서 도시의 기능적 회복도를 평가하였다. 이를 위해 라이프라인 중 도로 복구결과의 평가를 위하여 리스크 매트릭스 기법을 이용한 도로위험도평가를 수행하였으며 도시의 회복도를 측정하였다. 회복도를 크게 홍수로부터 도시가 받은 영향과 재해복구역량으로 구성하였으며 정량적인 평가를 위해 각각 손상함수와 재해재난목적예비비를 활용하여 산정하였다. 이후 복구우선순위를 산정하였으며 복구와 도시회복도와의 관계를 분석하기 위하여 재해연보 자료를 기초로 회귀분석을 통해 복구비용을 추정하였다 (유순영 등.,2014). 시범지역에 적용한 결과 시설 및 도로 복구에 따른 도시영향의 변화보다 복구비사용으로 인한 재해복구역량의 변화가 더욱 크다는 것을 확인하였다. 이는 재해재난목적예비비의 중요성이 크다는 것을 의미하며 향후 추가적인 인문학적, 법제적 요소가 회복도에 미치는 영향을 연구한다면 도시회복도 향상 및 도시복구에 관한 정책적 의사결정에 큰 도움이 될 것이다.

  • PDF

Determination of drought events considering the possibility of relieving drought and estimation of design drought severity (가뭄해갈 가능성을 고려한 가뭄사상의 결정 및 확률 가뭄심도 산정)

  • Yoo, Ji Young;Yu, Ji Soo;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.275-282
    • /
    • 2016
  • The objective of this study is to propose a new method to determine the drought event and the design drought severity. In order to define a drought event from precipitation data, theory of run was applied with the cumulative rainfall deficit. When we have a large amount of rainfall over the threshold level, in this study, we compare with the previous cumulative rainfall deficit to determine whether the drought is relieved or not. The recurrence characteristics of the drought severity on the specific duration was analyzed by the conditional bivariate copula function and confidence intervals were estimated to quantify uncertainties. The methodology was applied to Seoul station with the historical dataset (1909~2015). It was observed that the past droughts considered as extreme hydrological events had from 10 to 50 years of return period. On the other hand, the current on-going drought event started from 2013 showed the significantly higher return period. It is expected that the result of this study may be utilized as the reliable criteria based on the concept of return period for the drought contingency plan.

Analysis of Changes in Rainfall Frequency Under Different Thresholds and Its Synoptic Pattern (절점기준에 따른 강우빈도 변화 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.791-803
    • /
    • 2016
  • Recently, frequency of extreme rainfall events in South Korea has been substantially increased due to the enhanced climate variability. Korea is prone to flooding due to being surrounded by mountains, along with high rainfall intensity during a short period. In the past three decades, an increase in the frequency of heavy rainfall events has been observed due to enhanced climate variability and climate change. This study aimed to analyze extreme rainfalls informed by their frequency of occurrences using a long-term rainfall data. In this respect, we developed a Poisson-Generalized Pareto Distribution (Poisson-GPD) based rainfall frequency method which allows us to simultaneously explore changes in the amount and exceedance probability of the extreme rainfall events defined by different thresholds. Additionally, this study utilized a Bayesian approach to better estimate both parameters and their uncertainties. We also investigated the synoptic patterns associated with the extreme events considered in this study. The results showed that the Poisson-GPD based design rainfalls were rather larger than those of based on the Gumbel distribution. It seems that the Poisson-GPD model offers a more reasonable explanation in the context of flood safety issue, by explicitly considering the changes in the frequency. Also, this study confirmed that low and high pressure system in the East China Sea and the central North Pacific, respectively, plays crucial roles in the development of the extreme rainfall in South Korea.

A Feasibility Study of a Rainfall Triggeirng Index Model to Warn Landslides in Korea (산사태 경보를 위한 RTI 모델의 적용성 평가)

  • Chae, Byung-Gon;Choi, Junghae;Jeong, Hae Keun
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.235-250
    • /
    • 2016
  • In Korea, 70% of the annual rainfall falls in summer, and the number of days of extreme rainfall (over 200 mm) is increasing over time. Because rainfall is the most important trigger of landslides, it is necessary to decide a rainfall threshold for landslide warning and to develop a landslide warning model. This study selected 12 study areas that contained landslides with exactly known triggering times and locations, and also rainfall data. The feasibility of applying a Rainfall Triggering Index (RTI) to Korea is analyzed, and three RTI models that consider different time units for rainfall intensity are compared. The analyses show that the 60-minute RTI model failed to predict landslides in three of the study areas, while both the 30- and 10-minute RTI models gave successful predictions for all of the study areas. Each RTI model showed different mean response times to landslide warning: 4.04 hours in the 60-minute RTI model, 6.08 hours in the 30-minute RTI model, and 9.15 hours in the 10-minute RTI model. Longer response times to landslides were possible using models that considered rainfall intensity for shorter periods of time. Considering the large variations in rainfall intensity that may occur within short periods in Korea, it is possible to increase the accuracy of prediction, and thereby improve the early warning of landslides, using a RTI model that considers rainfall intensity for periods of less than 1 hour.