• Title/Summary/Keyword: 극저준위방사성폐기물 인수기준

Search Result 3, Processing Time 0.018 seconds

Review of the Acceptance Criteria of Very Low Level Radioactive Waste for the Disposal of Decommissioning Waste (극저준위 해체폐기물 처분을 위한 방사성폐기물 인수기준 분석)

  • Kim, Beomin;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.165-169
    • /
    • 2014
  • In order to use the nuclear energy as the sustainable energy source, the safe and efficient management of radioactive wastes generated from the nuclear fuel cycle including NPP decommissioning is one of the most important factors. The establishment of acceptance criteria for very low level radioactive wastes generated from decommissioning of nuclear power plant in a large quantity is seemed to play a key role for developing a radioactive wastes disposal strategy as well as NPP decommissioning strategy. In this thesis, we want to review the acceptance criteria of low-and-intermediate-level radioactive wastes in this country through the analysis of other country's acceptance criteria.

Review of Waste Acceptance Criteria in USA for Establishing Very Low Level Radioactive Waste Acceptance Criteria in the 3rd Step Landfill Disposal Site (국내 극저준위방폐물 처분시설 인수기준 마련을 위한 미국 처분시설의 인수기준 분석)

  • Park, Kihyun;Chung, Sewon;Lee, Unjang;Lee, Kyungho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2020
  • According to the Korea Radioactive Waste Agency's (KORAD's) medium and low level radioactive waste management implementation plan, the Domestic 3rd Step Landfill Disposal Facility has planned to accept a total of 104,000 drums (2 trenches) of very low level radioactive waste (VLLW), from the decommissioning site from April 2019 - February 2026 (total budget: 224.6 billion Won). Subsequently, 260,000 drums (5 trenches) will be disposed in a 34,076 ㎡. Accordingly, KORAD is preparing a waste acceptance criteria (WAC) for this facility. Every disposal facility for VLLW in other countries such as France and Spain, operate their WAC for each VLLW facility with a reasonable application approach, This, paper focuses on analyzing the WAC conditions in VLLW sites in the USA and discusses whether these can be met in domestic VLLW WAC. It also helps in the preparation of WAC for the 3rd Step Landfill Disposal Site in Gyeongju, since the USA has prior experience on decommissioning nuclear waste.

Manufacture of non-sintered cement solidifier using clay, waste soil and blast furnace slag as solidifying agents: Mineralogical investigation (점토, 폐토양 및 고로슬래그를 고화재로 이용한 비소성 시멘트 고화체 제조: 광물학적 고찰)

  • Jeon, Ji-Hun;Lee, Jong-Hwan;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.25-39
    • /
    • 2022
  • This study was conducted to evaluate the manufacturing process of non-sintered cement for the safe containment of radioactive waste using low level or ultra-low level radioactive waste soil generated from nuclear-decommissioning facilities, clay minerals, and blast furnace slag (BFS) as an industrial by-product recycling and to characterize the products using mineralogical and morphological analyses. A stepwise approach was used: (1) measuring properties of source materials (reactants), such as waste soil, clay minerals, and BFS, (2) manufacturing the non-sintered cement for the containment of radioactive waste using source materials and deducing the optimal mixing ratio of solidifying and adjusting agents, and (3) conducting mineralogical and morphological analyses of products from the hydration reactions of manufactured non-sintered cement solidifier (NSCS) containing waste concrete generated from nuclear-decommissioning facilities. The analytical results of NSCS using waste soil and clay minerals confirmed none of the hydration products, but calcium silicate (CSH) and ettringite were examined as hydration products in the case of using BFS. The compressive strength of NSCS manufactured with the optimum mixing ratio and using waste soil and clay minerals was 3 MPa after the 28-day curing period, and it was not satisfied with the acceptance criteria (3.44 MPa) for being brought in disposal sites. However, the compressive strength of NSCS using BFS was estimated to be satisfied with the acceptance criteria, despite manufacturing conditions, and it was maximized to 27 MPa at the optimal mixing ratio. The results indicate that the most relevant NSCS for the safe containment of radioactive waste can be manufactured using BFS as solidifying agent and using waste soil and clay minerals as adsorbents for radioactive nuclides.