• 제목/요약/키워드: 극저온공학

검색결과 183건 처리시간 0.02초

난삭재의 극저온절삭에서의 절삭 특성에 관한 연구 (A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report))

  • 김칠수;오선세;임영호
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

소형 수소액화기 설계 및 운전에 관한 연구 (Design and Operation of a Small-Scale Hydrogen Liquefier)

  • 백종훈;강상우;강형묵;나다니엘 갈소;김서영;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

극저온 냉동기로 냉각되는 이중전류도입선의 최적설계 (Optimal design of binary current leads cooled by cryogenic refrigerator)

  • 송성재;장호명
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.552-560
    • /
    • 1997
  • Analysis is performed to determine the optimal lengths or cross-sectional areas of refrigerator-cooled current leads that can be applied to the conduction-cooled superconducting systems. The binary current lead is composed of the series combination of a normal metal at the upper(warm) part and a high $T_c$ superconductor(HTS) at the lower(cold) part. The heat conduction toward the cold end of HTS part constitutes a major refrigeration load. In addition, the joint between the parts should be cooled by a refrigerator in order to reduce the load at the low end and maintain the HTS part in a superconducting state. The sum of the work inputs required for the two refrigeration loads needs to be minimized for an optimal operation. In this design, three simple models that depict the refrigeration performance as functions of cooling temperature are developed based on some of the existing refrigerators. By solving one-dimensional conduction equation that take into account the temperature-dependent properties of the materials, the refrigeration works are numerically calculated for various values of the joint temperature and the sizes of two parts. The results show that for given size of HTS, there exist the optimal values for the joint temperature and the size of the normal metal. It is also found that the refrigeration work decreases as the length of HTS increases and that the optimal size of normal metal is quite independent of the size of HTS. For a given length of HTS, there is an optimal cross-sectional area and it increases as the length increases. The dependence of the optimal sizes on the refrigerator models employed are presented for 1kA leads.

  • PDF

추진제 탱크내의 액체산소 온도상승에 대한 해석적 고찰 (Analytical Investigation on Temperature Rise of Liquid Oxygen in Propellant Tank)

  • 조남경;정용갑;김영목;정상권
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.25-37
    • /
    • 2005
  • 터보펌프 공급방식 발사체 추진기관은 공급 시작 시점에서부터 종료되는 시점까지 산화제 터보펌프 입구에서의 온도 요구조건을 충족시켜야 한다. 이러한 조건이 만족되지 못할 경우 터보펌프 입구에서 캐비테이션이 발생하여 펌핑(pumping) 성능이 저하되고, 심한 경우 펌프의 손상을 초래할 수 있다. 따라서 극저온 액체산소를 사용하는 액체로켓 추진기관에서는 액체산소의 온도 상승에 대한 적확한 예측이 필수적이다 본 논문에서는 탱크 내의 액체산소 온도상승과 관계된 탱크 내 해석 방법을 체계적으로 제시하였고, 부력동기 경계층 이론을 적용하여 터보펌프 공급방식 로켓 추진기관의 충전, 대기, 선가압, 비행 등의 전 과정을 통하여 탱크에 충전된 액체산소의 온도상승을 예측할 수 있는 모델을 제시 하였다.

극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정 (Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm)

  • 박재우;오현철
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.336-341
    • /
    • 2019
  • The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.

합성곱 신경망(CNN)을 활용한 항공 시스템의 이상 탐지 모델 연구 (Anomaly Detections Model of Aviation System by CNN)

  • 임현재;김태림;송종규;김범수
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2023
  • 최근 미래의 운송시스템으로 도심교통항공(Urban Aircraft Mobility)이 주목받고 있으며 소형 드론도 다양한 산업에서 역할을 하고 있다. 다양한 종류의 항공 시스템 고장은 추락으로 막대한 재산 및 인명 피해로 이어질 수 있다. 항공 시스템이 많이 활용되는 무기체계에서도 고장은 임무 실패의 결과를 유발한다. 본 논문에서는 항공 시스템의 이상(Anomaly)을 탐지하여 개발 및 생산 간 시스템의 신뢰도를 높이고 운용 중 사고를 예방할 수 있도록 딥러닝 기술을 활용한 이상 탐지 모델을 연구했다. 모델 훈련 및 평가 데이터로 극저온 환경에서 시스템의 전류 데이터를 활용하였으며 이미지 인식에 많이 활용되는 딥러닝 기법 합성곱 신경망(CNN; Convolutional Neural Network)을 활용하여 딥러닝 네트워크를 구현했다. 시험 대상 시스템은 극저온 환경에서 다양한 형태의 고장이 유발되었고 전륫값의 특이점이 나타났다. 시스템 정상 및 고장 데이터를 활용하여 모델을 훈련 시키고 평가한 결과 98% 이상의 재현율(Recall)로 이상 탐지하는 것을 확인했다.

지하식 LNG 저장탱크의 설계 조건에 따른 거동분석 (Structural Response of Underground LNG Storage Tank (Parameter Study for Design Conditions))

  • 곽효경;이광모;송종영
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.219-235
    • /
    • 2002
  • 이 논문에서는 지하식 LNG 저장탱크의 설계조건 변화에 따른 구조거동에 대한 사례연구를 다루었다. 지하식 LNG 저장탱크의 설계에 있어서, 치적의 탱크 형상과 치수를 결정하는 것은 다양한 하중조건과 이들의 하중조합 하에서 더욱 향상된 구조거동을 위해 매우 중요하다. 저장 탱크의 설계단계에서 유지단계에 이르기까지 구조거동에 영향을 미치는 주요인자에 대한 분석과 평가가 이루어졌으며, 이러한 매개변수연구를 토대로 한 결과에 근거하여 지하식 LNG 저장탱크의 보다 합리적인 설계에 대한 기초자료를 제안하였다.

멤브레인 LNG 선박용 강화 폴리우레탄폼의 극저온 거동 연구 (Study on Cryogenic Behavior of Reinforced Polyurethane Foam for Membrane Type LNG Carrier)

  • 장철웅;심천식;송하철;송창용
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.74-79
    • /
    • 2013
  • In the context of the structural performance of an LNG hold, the mechanical characteristics of the insulation material are considered to be a critical design factor under cryogenic temperatures. This paper presents the thermal elasto-plastic behavior of the reinforced polyurethane foam (RPUF) adapted for the insulation material of a membrane-type LNG carrier via both experiments and numerical simulations realizing the cryogenic condition. The experiments are carried out to investigate the thermal transfer and thermal elasto-plastic deformation characteristics of an actual RPUF specimen. The heat transfer simulations based on the finite element method (FEM) include a forced convection analysis. The results of heat transfer analyses are compared with the experimental results. Reasonable cryogenic conditions for RPUF are reviewed based on both the analysis and experimental results.

고경도강(AISI 4140, HrC60)의 하드터닝에서 가공속도 및 윤활조건 변경에 따른 CBN 공구의 마모 특성 (Wear Characteristics of CBN Tools on Hard Turning of AISI 4140)

  • 양기동;박경희;이명규;이동윤
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.799-804
    • /
    • 2014
  • Hard turning is a machining process for hardened materials with high surface quality so that grinding process can be eliminated. Therefore, the hard turning is capable of reducing machining time and improving productivity. In this study, hardened AISI4140 (high-carbon chromium steel) that has excellent yield strength, toughness and wear resistance was finish turned using CBN tools. Wear characteristics of CBN tool was analyzed in dry and MQL mixed with nano-particle (Nano-MQL). The dominant fracture mechanism of CBN tool is diffusion and dissolution wear on the rake surface resulting in thinner cutting edge. Abrasive wear by hard inclusion in AISI4140 was dominant on the flank surface. Nano-MQL reduced tool wear comparing with the dry machining but chip evacuation should be considered. A cryogenically treated tool showed promising result in tool wear.

이중 입구형 맥동관 냉동기에서의 압력 파형 측정 (Pressure Measurement in Double Inlet Pulse Tube Refrigerator)

  • 정제헌;남관우;정상권;정은수
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.390-396
    • /
    • 2004
  • A double-inlet pulse tube refrigerator was fabricated as a U-shape with $\Phi$19.0 mm${\times}$125 mm regenerator packed by #200 stainless steel mesh and $\Phi$12.7 mm${\times}$125 mm pulse tube. A pressure sensor was installed at the inlet of the regenerator and a differential pressure sensor was installed across the bypass. Amplitude of the pulsating pressure was independent of the opening of the orifice and the bypass valves. Helium flow through the orifice and the bypass was calculated based on the measured pressure. Energy loss through the orifice and the bypass was evaluated with the measured pressure and the calculated helium flow rate. The energy loss, which is equivalent to the refrigeration capacity at the cold end of the ideal pulse tube refrigerator, was mainly generated through the orifice. It was proportional to the opening of the orifice valve, but the real refrigerator displayed the best performance at the optimized opening of the orifice valve. This optimized performance of the tested pulse tube refrigerator can be explained by additional refrigeration losses. As an example, the shuttle heat transfer loss of the pulse tube was calculated from the measured experimental data.