• 제목/요약/키워드: 극미세 패턴

검색결과 13건 처리시간 0.026초

나노인덴테이션을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석(I) (Finite Element Analysis of Nano Deformation for the Hyper-Fine Pattern Fabrication by using Nanoindentation)

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.210-217
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0mm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II) (Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II))

  • 이정우;윤성원;강충길
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

극미세 Mold 및 패턴 제작물 위한 나노변형의 기초연구 (Fundamental Study on Deformation Behavior of the Nano Structure for Application to the Hyper-fine Pattern and Mold Fabrication)

  • 이정우;윤성원;강충길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.333-336
    • /
    • 2002
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numberical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and bur was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. The result of the investigation will be applied to the fabrication of the hyper-fine pattern and mold.

  • PDF

나노스크래치 공정을 이용하여 극미세 패턴을 제작하기 위한 나노 변형의 유한요소해석 (Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nano-scratch Process)

  • 이정우;강충길;윤성원
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation scratch test was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass 7740) were used as specimens, and forming conditions to reduce the elastic recovery and pile-up were proposed. The indenter was modeled as a rigid surface. Minimum mesh sizes of specimens are 1-l0nm. Variables of the nanoindentation scratch test analysis are scratching speed, scratching load, tip radius and tip geometry. The nano-indentation scratch tests were performed by using the Berkovich pyramidal diamond indenter. Comparison between the experimental data and numerical result demonstrated that the FEM approach can be a good model of the nanoindentation scratch test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

차세대 반도체 세정장비 기술동향

  • 조중근
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2007년도 정기총회 및 추계학술대회
    • /
    • pp.42-54
    • /
    • 2007
  • ${\blacksquare}$ 매엽실 세정장비의 양산적용 확대 ${\centerdot}$ 역오염 감소로 수율개선, 짧은 TAT ${\centerdot}$ Throughput 개선필요 : Process Module + Wafer Transfer ${\blacksquare}$ 향후 $2{\sim}3$년 동안 세정기술의 패러다임 변화 예상 ${\centerdot}$ 초미세 패턴에서의 입자 제거 대책 (${\sim}22.5nm$), 신재료에 따른 케미컬 대응 (에칭, 부식, 물성변화). ${\blacksquare}$ 세정기술의 통합 솔루션 필요 ${\centerdot}$ 초임계 유체세정 : 극미세 패턴까지도 대응 가능 ${\centerdot}$ 장비와 공정 측면에서 많은 연구 필요

  • PDF

현상공정에서 표면장력에 의한 극미세 3 차원 구조물의 변형거동 분석 및 저감방안에 관한 연구 (Investigation into Deformation of Three-Dimensional Microstructures via Surface Tension of a Rinsing Material During a Developing Process)

  • 박상후;양동열
    • 대한기계학회논문집A
    • /
    • 제32권4호
    • /
    • pp.303-309
    • /
    • 2008
  • Dense and fine polymer patterns often collapse, as they come into contact with each other at their protruding tips. Resist pattern collapse depends on the aspect ratio of patterns and the surface tension of rinsing materials. The pattern collapse is a very serious problem in microfabrication, because it is one of the factors which limit the device dimensions. The reasons for the pattern collapse are known as the surface tension of rinse liquid, centrifugal force and rinse liquid flow produced in the developing process. In this work, we tried to evaluate the pattern collapse of three-dimensional microstructures that were fabricated by two-photon induced photopolymerization, and showed the way how to reduce the deformation of microstructures.

나노 인덴테이션 공정의 유한요소해석 및 실험적 검증 (Finite Element Anlaysis of Nanoindentation Process and its Experimental Verification)

  • 이정우;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.116-119
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic restoration and pile-up was proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1-10nm Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

나노스케일 절삭현상의 분자동역학적 시뮬레이션

  • 성인하;김대은;장원석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.129-129
    • /
    • 2004
  • 본 연구에서는 나노스케일 절삭가공(nanometric cutting process)시에 미세 팁과 가공표면사이에서 발생하는 현상들에 대하여 분자동역학적 시뮬레이션을 통하여 살펴보았다 본 연구의 목적은 실험적으로는 파악하기 어려운 극미세 가공에서 발생하는 나노트라이볼로지적 현상을 이해하고, 이를 토대로 기계적 가공에 기반하여 개발된 '기계-화학적 나노리소그래피(Mechano-Chemical Scanning Probe Lithography)' 공정을 개선, 발전시키는데 있다. 기계-화학적 나노리소그래피 기술은 극초박막의 리지스트(resist)를 미세탐침을 이용하여 기계적 가공으로 제거하고 이로인해 표면으로 드러난 모재부분을 화학적 에칭에 의해 추가로 가공하여 원하는 패턴형상을 얻어내는 기술이다.(중략)

  • PDF