• Title/Summary/Keyword: 그래피티

Search Result 22, Processing Time 0.015 seconds

Extraction of Whitening Agents from Natural Plants and Whitening Effect (천연물에 포함된 미백성분의 추출 및 미백효과)

  • Jin, Yinzhe;Ahn, So Young;Hong, Eun Suk;Li, Guang hua;Kim, Eun-Ki;Row, kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.348-353
    • /
    • 2005
  • The extracts from natural and fermented products such as Artemisia plants, Rhodiola Salientness, fermented soybeans and soybean paste were used to investigate the whitening effect. 10 g of Artemisia plant were added to 300 mL of ethanol and extracted by sonification at room temperature for 3 h. The extract was further partitioned by the equal volume percent in the order of the n-hexane, chloroform and ethyl acetate. 5 g of Rhodiola salientness was also added to 150 mL of methanol and extracted at the room temperature for 12 h. The effluents from a chromatographic column ($3.9{\times}250mm$, $C_{18}$, $15{\mu}m$) were collected and concentrated in two parts. The extraction of fermented soybeans and soybean paste were done by 60% ethanol. In this work, tyrosinase inhibitory activity and melanin inhibitory effect were measured to confirm the whitening effect. The water layer of Artemisia princeps Pampan showed the good inhibitory of antioxidant, while the hexane layer of Artemisia iwayomogi Kitamura and the chloroform layer of Artemisia princeps Pampan had the excellent melanin inhibitory effect. The Rhodiola salientness had the superior whitening effect to the arbutin in in-vivo melanin production ratio assay. However, the fermented soybeans and soybean paste did not show any whitening effect.

Reducing the Scan Time in Gastric Emptying Scintigraphy by Using Mathematical Models (위배출 신티그래피에서 수학적 모델을 이용한 지연영상 시간의 단축)

  • Yoon, Min-Ki;Hwang, Kyung-Hoon;Choe, Won-Sick;Lee, Byeong-Il;Lee, Jae-Sung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.4
    • /
    • pp.257-262
    • /
    • 2005
  • Purpose: Gastric emptying scan (GES) is usually acquired up to 2 hours. Our study investigated whether a fraction of meal-retention in the stomach at 120 minutes (FR120) was predicted from the data measured for 90 minutes by using non-linear curve fitting. We aimed at saving the delayed imaging by utilizing mathematical models. Materials and Methods: Ninety-six patients underwent GES immediately after taking a boiled egg with 74 MBq (2 mCi) Tc-99m DTPA. The patients were divided into Group I ($T_{1/2}\;{\leq}90\;min$) and Group II ($90\;min). Group I (n=51) had 21 men and 30 women, and Group II (n=45) 15 men and 30 women. There was no significant difference in age and sex between the two groups. Simple exponential, power exponential, and modified power exponential curves were acquired from the measured fraction of meal-retention at each time (0, 15, 30, 45, 60, 75, and 90 min) by non-linear curve fitting ($MATLAB^{\circledR}$ 5.3) and another simple exponential fitting was performed on the fractions at late times (60, 75, and 90 min). A predicted FR120 was calculated from the acquired functional formulas. A correlation coefficient between the measured FR120 and the predicted FR120 was computed ($MedCalc^{\circledR}$ 6.0). Results: Correlation coefficients(r) between the measured FR120 and the predicted FR120 of each mathematical functions were as follows: simple exponential function (Group I: 0.8558, Group II: 0.5982, p<0.0001), power exponential function (Group I: 0.8755, Group II: 0.6008, p<0.0001), modified power exponential function (Group I: 0.8892, Group II: 0.5882, p<0.0001), and simple exponential function at the late times(Group I: 0.9085, Group II: 0.6832, p<0.0001). In all the fitting models, the predicted FR120 were significantly correlated with the measured FR120 in Group I but not in Group II. There was no statistically significant difference in correlation among the 4 mathematical models. Conclusion: In the cases with $T_{1/2}\;{\leq}90\;min$, the predicted FR120 is significantly correlated with the measured FR120. Therefore, FR120 can be predicted from the data measured for 90 minutes by using non-linear curve fitting, saving the delayed imaging after 90 minutes when $T_{1/2}\;{\leq}90\;min$ is ascertained.