Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.730-733
/
2015
대용량의 인터넷 뉴스 데이터로부터 유용한 정보를 찾기 위해 연관 키워드, 핫 키워드 분석과 같은 다양한 분석 기술들이 연구되고 있다. 기존의 토픽 모델 기반의 기법은 키워드들간의 연관성을 제대로 표현하지 못하여 마이닝한 연관 키워드와 핫 키워드의 정확도가 낮은 문제점이 있다. 최근, 뉴스 데이터를 뉴스 내의 단어를 버텍스로, 같은 문장내의 단어들을 에지로 연결하는 그래프 기반의 모델링기법이 연구되었다. 이러한 뉴스 그래프 DB에서 그래프 마이닝 기술을 적용하면 연관 키워드, 핫 키워드를 마이닝 할 수 있다. 본 논문은 그래프 마이닝 기술 기반의 효과적인 뉴스 데이터 분석 기술을 제안한다. 실제 뉴스 데이터를 통해 마이닝한 유용한 뉴스 그래프 패턴들을 보이고 뉴스 데이터 분석에 효과적으로 활용될 수 있음을 보인다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.24-26
/
1998
본 논문에서는 그래프 구조 퍼지 시스템을 유전자 알고리즘을 이용하여 최적화할 때, 해개체를 직접 코딩함으로써 발생되는 해개체 길이의 폭발적 증가 문제를 해결하기 위하여 문법 코딩 기법을 이용한 그래프 구조 퍼지 시스템을 제안한다. 문법적 코딩 기법은 퍼지 소속 함수와 퍼지 규칙의 상호 연관적인 규칙을 유전형으로 표현하여 퍼지 규칙의 반복적 패턴 혹은 재귀적 특성을 문법 규칙에 반영시킴으로써 유전자 알고리즘의 탐색공간을 효율적으로 줄인다.
Park, Chul-Hyun;Lee, Seong-Dae;Kwak, Yong-Won;Jeon, Sung-Hwan;Park, Hyu-Chan
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.16-18
/
2005
웹은 사용자가 원하는 정보를 쉽고 정확하게 검색할 수 있도록 웹 문서를 자료구조화하여 보다 신뢰성 있는 패턴을 추출하고 사용자의 특성과 행동 패턴을 적용하여 개인화 하여야한다. 본 논문에서는 개인화하기 위한 전처리 과정으로서 웹 문서를 구조화 하는 방법을 제안한다. 제안 방법은 기본적으로 웹 문서 태그의 하이퍼링크를 깊이 우선 탐색 알고리즘을 사용하여 방향그래프를 만드는 것이다. 이때 웹 문서 태그 탐색 시 플래시, 스크립트 등의 찾기 힘든 하이퍼링크를 찾는 문제와 '뒤로' 버튼 사용 시 웹 접근로그에 기록되지 않는 문제점을 보완한다. 이를 위해 클릭 스트림을 스택에 저장하여 이미 만들어진 방향그래프와 비교하여 새롭게 찾은 정점과 간선을 추가함으로써 보다 신뢰성높은 방향그래프를 만든다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.79-82
/
1998
본 연구에서는 연결단어 음성인식 상에서 올바른 참조 패턴을 생성하기 위해 Levelbuilding 알고리즘을 이용하여 인식대상 단어의 표본 집합(훈련패턴 집합)으로부터 참조 패턴을 자동적으로 생성하는 알고리즘을 개발하였다. 본 연구는 분한 K-Mans 훈련방법에 기초하고 있으며, Levelbuilding 알고리즘을 이용하여 훈련패턴으로부터 참조 패턴을 생성하는 것이다. 먼저 초기화 과정에서 훈련 패턴을 그에 포함된 단어 수만큼 등간격 분리하여 분리된 단어들을 소속 Cluster로 분류하고 각 Cluster의 Center들로 초기 참조패턴을 구성한다. 그리고 참조패턴, 제어정보 및 Levelbuilding 알고리즘을 이용하여 각 훈련패턴을 분리하고, 분리된 단어들을 소속 Cluster로 분류하여 단어 Cluster집합을 구성한 후 DTW 및 minimax알고리즘을 이용해 각 Cluster의 Center를 구하여 참조 패턴을 생성한다. 참조패턴 구성에 변화가 없을 때까지 전 단계의 참조패턴과 본 알고리즘을 반복 수행하여 최적의 참조패턴을 생성한다. 본 알고리즘을 이용하여 3개 숫자의 연결단어 집합으로부터 영('0')에서 구('9')까지 숫자음에 대한 참조패턴을 자동 생성하였다. 참조패턴 생성과정에서 가정 중요한 처리인 훈련패턴 분리과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.100-102
/
2002
최근 컴포넌트 기반 개발이 소프트웨어 개발의 새로운 패러다임으로 대두되고 있는 가장 큰 이유는 컴포넌트의 재사용으로 인해 얻을 수 있는 개발 기간의 단축, 유지ㆍ보수의 용이함 등의 장점들 때문이다. 재사용의 개념을 시스템으로 확장하여 생각하면 기존 레거시 시스템을 컴포넌트 기반 시스템으로 바꾸는 것이며 이를 위해서는 레거시 시스템의비즈니스 로직을 추출하여 컴포넌트화 해야 한다. 본 논문에서는 기존 레거시 시스템에서 컴포넌트 기반 시스템으로 변환하기 위해 필요한 비즈니스 로직 추출 방법으로 레거시 시스템 분석을 통해 얻은 시스템 플로우 그래프, 프로그램 호출 그래프, 패러그래프 흐름 그래프 등의 그래프 등을 이용하여 레거시 시스템을 이해하고 추출 정보로써 핵심 변수와 패턴 식별을 이용한 방법을 제안한 후 구현된 비즈니스 로직 추출기를 이용하여 구체적으로 COBOL 소스 코드에서 비즈니스 로직이 추출되는 과정을 설명하겠다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.352-356
/
2007
키그래프는 데이터 패턴 속에서 인간의 의사결정이나 미래에 닥쳐올 변화에 영향을 주지만 자주 발생하지 않는 희소성이 있는 사건을 발견하기 위한 알고리즘이다. 키그래프는 지진예측, 논문, 파일탐색, 그리고 중요한 URL 추출 등에 이용되었다. 데이터 분할을 통한 클러스터의 형성은 키그래프의 성능에 가장 큰 영향을 끼치는 요소 중의 하나이다. 본 논문에서는 유전자 알고리즘을 이용하여 키그래프의 성능을 향상시킬 수 있는 최적의 데이터 분할을 찾아내는 방법을 제안한다. 제안한 방법의 가능성을 보여주기 위하여 모바일 기기 사용자로부터 수집한 방문 장소 데이터에 제안하는 방법을 적용하여 키그래프의 성능이 향상되는 것을 보인다.
With the advent of big data and social networks, large-scale graph processing becomes popular research topic. Recently, an optimization technique called Gorder has been proposed to improve the performance of in-memory graph processing. This technique improves performance by optimizing the graph layout on memory to have better cache locality. However, since it is designed for in-memory graph processing systems, the technique is not suitable for disk-based graph engines; also the cost for applying the technique is significantly high. To solve the problem, we propose a new graph ordering called I/O Order. I/O Order considers the characteristics of I/O accesses for SSDs and HDDs to improve the performance of disk-based graph engine. In addition, the algorithmic complexity of I/O Order is simple compared to Gorder, hence it is cheaper to apply I/O Ordering. I/O order reduces the cost of pre-processing up to 9.6 times compared to that of Gorder's, still its performance is 2 times higher compared to the Random in low-locality graph algorithms.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.95-99
/
2014
본 논문에서는 최근 급속히 증가하여 사회적 이슈가 되고 있는 SMS 스팸 필터링을 위한 듀얼 SMS 스팸필터링 기법을 제안한다. 지속적으로 증가하고 새롭게 변형되는 SMS 문자 필터링을 위해서는 패턴 및 스팸 단어 사전을 통한 필터링은 많은 수작업을 요구하여 부적합하다. 그리하여 기계 학습을 이용한 자동화 시스템 구축이 요구되고 있으며, 효과적인 기계 학습을 위해서는 자질 선택과 자질의 가중치 책정 방법이 중요하다. 하지만 SMS 문자 특성상 문장들이 짧기 때문에 출현하는 자질의 수가 적어 분류의 어려움을 겪게 된다. 이 같은 문제를 개선하기 위하여 본 논문에서는 슬라이딩 윈도우 기반 N-gram 확장을 통해 자질을 확장하고, 확장된 자질로 그래프를 구축하여 얕은 구조적 특징을 표현한다. 학습 데이터에 출현한 N-gram 자질을 정점(Vertex)으로, 자질의 출현 빈도를 그래프의 간선(Edge)의 가중치로 설정하여 햄(HAM)과 스팸(SPAM) 그래프를 각각 구성한다. 이렇게 구성된 그래프를 바탕으로 노드의 중요도와 간선의 가중치를 활용하여 최종적인 자질의 가중치를 결정한다. 입력 문자가 도착하면 스팸과 햄의 그래프를 각각 이용하여 입력 문자의 2개의 자질 벡터(Vector)를 생성한다. 생성된 자질 벡터를 지지 벡터 기계(Support Vector Machine)를 이용하여 각 SVM 확률 값(Probability Score)을 얻어 스팸 여부를 결정한다. 3가지의 실험환경에서 바이그램 자질과 이진 가중치를 사용한 기본 시스템보다 F1-Score의 약 최대 2.7%, 최소 0.5%까지 향상되었으며, 결과적으로 평균 약 1.35%의 성능 향상을 얻을 수 있었다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.5
/
pp.411-419
/
2013
Research on developing algorithms for building modeling such as extracting outlines of the buildings and segmenting patches of the roofs using aerial images or LiDAR data are active. However, utilizing information from the building model is not well implemented yet. This study aims to propose a scheme for search identical or similar shape of buildings by utilizing graph topology pattern matching under the assumptions: (1) Buildings were modeled beforehand using imagery or LiDAR data, or (2) 3D building data from digital maps are available. Side walls, segmented roofs and footprints were represented as nodes, and relationships among the nodes were defined using graph topology. Topology graph database was generated and pattern matching was performed with buildings of various shapes. The results show that efficiency of the proposed method in terms of reliability of matching and database structure. In addition, flexibility in the search was achieved by altering conditions for the pattern matching. Furthermore, topology graph representation could be used as scale and rotation invariant shape descriptor.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.781-784
/
2017
본 논문에서는 최근 금융, 보험 등에서 빈번하게 발생하는 불법/이상 행위를 탐지하기 위해 데이터 그래프에서 사용자가 찾고자 하는 이상 패턴을 찾아 결과를 보여주는 그래프 가시화 툴을 제안한다. 개발한 툴은 정점과 간선 추가 및 삭제 등의 유용한 기능을 제공하기 때문에, 동적 그래프에 대한 불법/이상 행위 탐지를 위한 응용 프로그램에서도 널리 사용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.