• 제목/요약/키워드: 그래프 패턴

검색결과 195건 처리시간 0.022초

스트림 그래프에서 서브 그래프 패턴 분석을 이용한 이상 패턴 감지 (Anomaly Detection Using Subgraph Pattern Analysis in Graph Streams)

  • 위지원;최도진;임종태;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2019년도 춘계종합학술대회
    • /
    • pp.287-288
    • /
    • 2019
  • 그래프에서 이상 패턴은 정상 그래프와 상이하게 다른 양상을 갖는 그래프를 의미한다. 이상 패턴을 판단하기 위해서는 정상데이터 정확한 정의가 요구된다. 본 논문에서는 스트림 그래프에서 실시간으로 이상 패턴을 감지하는 기법을 제안한다. 제안하는 기법은 정상 서브그래프의 패턴(정상 패턴)을 정의하고 정점 간 연결 관계를 고려한다.

  • PDF

중요도를 고려한 가중치 그래프에서의 빈발 순회패턴 탐사 (Discovery of Frequent Traversal Patterns on Weighted Graph with Priority)

  • 이성대;박휴찬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.169-171
    • /
    • 2005
  • 그래프를 사용하는 데이터 표현법은 직$\cdot$간접적으로 실세계를 표현하는 다양한 데이터 모델 중에서 가장 일반화된 방법으로 알려져 있다. 기본적으로 그래프는 정점과 간선으로 구성되며, 정점과 간선은 그 중요도나 운영 목적에 따라 다양한 가중치가 부여될 수 있다. 특히, 이러한 그래프를 순회하는 트랜잭션들로부터 중요한 순회패턴을 탐사하는 것은 흥미로운 일이다. 본 논문에서는, 정점과 간선에 가중치가 있고 방향성을 가진 기반 그래프가 주어졌을 때, 그 그래프를 순회하는 트랜잭션들로부터 가중치를 고려하여 빈발 순회패턴을 탐사하는 방법을 제안한다. 또한, 이렇게 탐사한 결과에 가중치를 고려한 중요도를 평가하여 빈발 순회패턴들 간의 우선순위를 결정할 수 있도록 한다. 이 과정에서 발생할 수 있는 트랜잭션 노이즈는 기반 그래프의 간선 가중치의 평균과 표준편차를 이용하여 제거함으로써 보다 신뢰성 있는 빈발 순회패턴을 탐사할 수 있다. 제안한 논문은 웹 로그 마이닝 등 그래프를 이용하는 다양한 응용 분야에 적용할 수 있을 것이다.

  • PDF

길이에 따라 감소하는 빈도수 제한조건을 고려한 가중화 그래프 패턴 마이닝 기법 (A Weighted Frequent Graph Pattern Mining Approach considering Length-Decreasing Support Constraints)

  • 윤은일;이강인
    • 인터넷정보학회논문지
    • /
    • 제15권6호
    • /
    • pp.125-132
    • /
    • 2014
  • 대규모의 데이터베이스로부터 숨겨진 유용한 패턴 정보를 찾기 위해 빈발 패턴 마이닝이 제안된 이래로, 다양한 종류의 접근 방법들과 어플리케이션들이 연구되어 왔다. 특히, 빈발 그래프 패턴 마이닝은 계속해서 복잡해져 가는 최근의 데이터들을 효과적으로 다루기 위해 제안되었고, 이와 관련한 다양한 효율적인 알고리즘들이 연구되어 왔다. 그래프 데이터베이스로부터 얻을 수 있는 그래프 패턴들은 이를 구성하는 요소들에 따라 다른 중요도를 가지며 길이에 따라 다른 특성을 갖는다. 하지만, 전통적인 빈발 그래프 패턴 마이닝 접근 방법들은 이러한 문제들을 고려할 수 없다는 한계점을 지닌다. 즉, 기존의 방법들은 마이닝 과정에서 추출되는 그래프 패턴들의 길이에 상관없이 오직 하나의 최소 지지도 임계값만을 고려하고 이들의 가중치 요소들을 사용하지 않기 때문에, 실제적으로 쓸모없는 그래프 패턴들이 상당량 생성될 수 있다. 작은 수의 정점과 간선을 갖는 작은 그래프 패턴들은 이들에 대한 가중화 지지도 값이 상대적으로 높을 때 흥미로운 특성을 갖는 경향이 있는 반면, 많은 정점과 간선을 갖는 큰 그래프 패턴들은 비록 가중화 지지도 값이 상대적으로 낮을지라도 흥미로운 특성을 가질 수 있다. 이러한 이유로, 본 논문에서는 길이에 따라 감소하는 지지도 제한조건을 고려한 가중치 기반의 빈발 그래프 패턴 마이닝 알고리즘을 제안한다. 본 논문에서 제공되는 총체적인 실험 결과들은 제안되는 방법이 기존의 최신 그래프 마이닝 알고리즘과 비교하여 패턴 생성, 수행시간, 그리고 메모리 사용량 측면에서 더욱 뛰어난 성능을 보장함을 보인다.

시간 세그먼트 기반 행위 패턴 그래프 모델링 기법 (A Method for Time Segment based Activity Pattern Graph Modeling)

  • 박기성;한용구;김진승;이영구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.183-185
    • /
    • 2012
  • 행위 DB로부터 행위패턴 분석 및 마이닝을 위해서는 정교한 행위패턴 모델링 기술이 수반되어야 한다. 기존의 그래프기반 행위 패턴 모델링 방법은 하루 행위 시퀀스들의 동일한 행위 시퀀스 세그먼트를 찾아 하나의 행위 시퀀스로 결합시켜 행위 그래프를 생성하였다. 이 방법은 서로 다른 시간에 발생한 행위 시퀀스 세그먼트들이 하나의 행위 시퀀스로 결합되는 문제가 발생한다. 본 논문에서는 하루의 행위 시퀀스를 시간 세그먼트 단위로 분할하고, 각 시간 세그먼트별로 행위 그래프를 생성하여 정교한 행위 그래프 모델을 수립하는 방법을 제안한다. 그래프 마이닝 기법들을 활용한 실험을 통하여 제안하는 행위패턴 모델링 기법이 기존의 행위 그래프 모델 기법보다 더 유용함을 보인다.

연관법칙 마이닝(Association Rule Mining)을 이용한 ANIDS (Advanced Network Based IDS) 설계 (ANIDS(Advanced Network Based Intrusion Detection System) Design Using Association Rule Mining)

  • 정은희;이병관
    • 한국정보통신학회논문지
    • /
    • 제11권12호
    • /
    • pp.2287-2297
    • /
    • 2007
  • 제안한 ANIDS(Advanced Network based IDS)는 네트워크 패킷을 수집하여 연관규칙 마이닝 기법을 이용하여 패킷의 연관성을 분석하고, 연관성이 높은 패킷을 이용해 패턴 그래프를 생성한 후, 생성된 패턴 그래프를 이용해 침입인지를 판단하는 네트워크 기반 침입 탐지 시스템이다. ANIDS는 패킷 수집 및 관리하는 PMM(Packet Management Module), 연관성 있는 패킷들만을 이용해 패턴 그래프를 생성하는 PGGM (Pattern Graph Generate Module), 침입을 탐지하는 IDM(Intrusion Detection Module)으로 구성된다. 특히, PGGM은 Apriori 알고리즘을 이용해 $Sup_{min}$보다 큰 연관규칙의 후보 패킷을 찾은 후, 연관규칙의 신뢰도를 측정하여 최소 신뢰도 $Conf_{min}$보다 큰 연관규칙의 패턴 그래프를 생성한다. ANIDS는 패킷간의 연관성을 분석하여 침입인지를 탐지 할 수 있는 패턴 그래프를 사용함으로써, 침입 탐지의 긍정적 결함 오류를 감소시킬 수 있으며, 완벽한 패턴 그래프 패턴이 생성되기 전에, 이미 침입으로 판정된 패턴 그래프 패턴과 비교하여 유사한 패턴 형태를 침입으로 간주하므로 기존의 침입 탐지 시스템에 비해 침입 탐지속도를 감소시키고 침입 탐지율을 증가시킬 수 있다.

효율적인 시멘틱 질의 처리를 위한 인덱싱 기법 (Indexing Mechanism for Efficient Semantic Query Processing)

  • 김학수;차현석;손진현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.97-100
    • /
    • 2006
  • RDF 는 트리플의 집합으로서 그래프 데이터 모델로 표현되며, 사용자는 RDF 그래프 모델로부터 정보를 검색하기 위해 시멘틱 질의 언어를 사용한다. 그러나 이러한 접근 방식은 최악의 경우 전체 그래프 데이터 모델을 검색해야 되는 문제점이 발생한다. 이에 따라 최근의 연구에서는 시멘틱 질의를 효율적으로 처리하기 위해서 인덱스를 사용한다. 시멘틱 질의 언어(RDQL, SPARQL)의 핵심은 RDF 트리플에 대한 패턴을 기술함으로써 원하는 트리플 정보를 검색할 수 있게 하는 것이다. 따라서, 기존의 인덱스는 단일 트리플을 효율적으로 검색하는 데 초점을 둔다. 거라나 트리플 패턴의 집합으로 질의가 표현될 경우에는 트리플 패턴 사이의 상관관계 때문에 조인비용이 많이 발생하는 문제점이 있다. 본 논문에서는 조인 비용이 발생되는 문제점을 해결하기 위한 인덱싱 기법을 제안한다. RDF 그래프 모델에서 유지해야 할 정보를 줄이기 위해서 RDF 그래프 모델에 존재하는 유사한 서브 그래프를 하나의 서브 그래프로 병합한다. 병합절차를 마친 여러 서브 그래프에 존재하는 모든 경로를 인덱스에 유지 함으로써 조인 비용을 제거한다.

  • PDF

가중치 순회로부터 빈발 순회패턴의 탐사 및 순회분할을 통한 성능향상 (Discovery of Frequent Traversal Patterns from Weighted Traversals and Performance Enhancement by Traversal Split)

  • 이성대;박휴찬
    • 한국정보통신학회논문지
    • /
    • 제11권5호
    • /
    • pp.940-948
    • /
    • 2007
  • 실세계의 많은 문제는 그래프와 그 그래프를 순회하는 트랜잭션으로 모델링 될 수 있다. 예를 들면, 웹페이지의 연결구조는 그래프로 표현될 수 있고, 사용자의 웹페이지 방문경로는 그 그래프를 순회하는 트랜잭션으로 모델링 될 수 있다. 이와 같이 그래프를 순회하는 트랜잭션들로부터 빈발 패턴과 같이 중요한 패턴을 찾아내는 것은 의미있는 일이다. 본 논문에서는, 방향 그래프와 그 그래프를 순회하는 가중치가 있는 트랜잭션들이 주어졌을 때, 빈발한 순회패턴을 탐사하는 알고리즘을 제안한다. 또한, 이 알고리즘의 성능향상을 위하여 순회를 분할하는 방법을 제안하고 실험을 통하여 검증한다.

Is-A Node Type Modeling Methodology to Improve Pattern Query Performance in Graph Database

  • Park, Uchang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.123-131
    • /
    • 2020
  • 그래프 데이터베이스에서 패턴질의는 관계 데이터베이스 SQL과 비교하여 질의의 쉬운 표현, 높은 질의 처리 성능을 기대할 수 있는 장점이 있다. 그러나 그래프 데이터베이스는 관계 데이터베이스와 달리 논리적 데이터 모델을 구축하는 방법론이 정의되어 있지 않아 모델링에 따라 패턴 질의의 장점을 활용하지 못할 수 있다. 본 연구는 그래프 모델링 과정 중 나타나는 is-a 노드 모델링 방법에서 일반화 모델로 설계할 경우와 특수화 모델로 설계할 경우 그래프 패턴질의의 성능 차이가 있음을 실험하였다. 실험 결과 is-a 노드 설계를 특수화 모델로 설계할 경우 더 우수한 성능을 얻을 수 있음을 보였다. 또 추가로 패턴질의를 작성할 때 변수를 노드나 간선에 바인딩시키는 경우 그렇지 않는 경우보다 성능이 우수할 수 있음을 보였다. 실험 결과들은 그래프 데이터베이스에서 패턴질의에 대한 is-a 노드 모델링 방법 및 그래프 질의 작성 방법으로 제시될 수 있다.

순환 그래프 마이닝에서 중복된 그래프 패턴의 확장을 피하는 효율적인 기법 (An efficient approach of avoiding extensions of duplicated graph patterns in cyclic graph mining)

  • 노영상;윤은일;편광범;양흥모;이강인;류근호;이경민
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.33-41
    • /
    • 2011
  • 그래프 마이닝에서 복잡한 그래프 구조로 인해, 중복된 확장 연산이 수행되며 이로인해 낮은 효율성을 가지게 된다. 본 논문에서는 순환그래프에서 중복된 그래프 패턴으로의 확장을 최소화하기위해 중복 판단을 효율적으로 하는 그래프 마이닝 알고리즘을 제안한다. 제안하는 기법에서는 순환간선의 우선순위를 고려하여 우선순위가 낮은 간선을 먼저 확장하게 함으로써 중복확장을 줄이도록 하였다. 이 기법의 성능을 평가하기 위해, 알고리즘을 구현하고 그래프 마이닝의 대표 알고리즘인 가스톤 알고리즘과 성능 평가를 하였으며, 제안하는 알고리즘이 복잡한 그래프 구조에서 반복되어 발생하는 연산중 하나인 순환 그래프에서 패턴 확장 시에 필요한 연산을 효율적으로 줄이도록하여 전체 마이닝의 성능이 향상됨을 보인다.

그래프 환경에서 접근 패턴을 고려한 캐싱 기법 (Caching Scheme Considering Access Patterns in Graph Environments)

  • 유승훈;김민수;복경수;유재수
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2017년도 춘계 종합학술대회 논문집
    • /
    • pp.19-20
    • /
    • 2017
  • 최근 소셜 미디어와 센서 장비의 기술의 발달로 그래프 데이터의 양이 급격히 증가 하였다. 그래프 데이터의 처리 과정에서 I/O 비용이 발생하여 데이터가 많아지면 병목현상으로 인해 데이터의 처리와 관리에 있어 성능에 한계가 발생한다. 이러한 문제를 해결하기 위해 데이터를 메모리에서 관리하는 캐시 기법에 대한 연구가 이루어 졌다. 본 논문에서는 서브그래프 데이터의 접근 패턴을 고려한 캐싱 기법을 제안한다. 그래프 환경에서 그래프 질의 이력을 통해 패턴을 찾고 질의 관리 테이블과 FP(frequent pattern)-Tree 통해 선별된 데이터를 메모리에 적재시킨다. 또한, 캐시 실패(cache miss)가 발생 하였을 때, 주변의 이웃 정점을 같이 메모리에 적재시킨다. 메모리가 가득 찰 경우 캐시 된 데이터를 퇴출시키는 교체 전략을 제안한다.

  • PDF