KIPS Transactions on Software and Data Engineering
/
v.9
no.3
/
pp.91-100
/
2020
Unlike the existing Visual Question Answering(VQA) problems, the new Visual Commonsense Reasoning(VCR) problems require deep common sense reasoning for answering questions: recognizing specific relationship between two objects in the image, presenting the rationale of the answer. In this paper, we propose a novel deep neural network model, KG_VCR, for VCR problems. In addition to make use of visual relations and contextual information between objects extracted from input data (images, natural language questions, and response lists), the KG_VCR also utilizes commonsense knowledge embedding extracted from an external knowledge base called ConceptNet. Specifically the proposed model employs a Graph Convolutional Neural Network(GCN) module to obtain commonsense knowledge embedding from the retrieved ConceptNet knowledge graph. By conducting a series of experiments with the VCR benchmark dataset, we show that the proposed KG_VCR model outperforms both the state of the art(SOTA) VQA model and the R2C VCR model.
The purpose of this study is to investigate the proportional reasoning of middle school students during the process of expressing and interpreting the graphs. We collected data from a teaching experiment with four 7th grade students who participated in 23 teaching episodes. For this study, the differences between student A and student B-who joined theteaching experiment from the $1^{st}$ teaching episode through the $8^{th}$ -in understanding graphs are compared and the reason for their differences are discussed. The results showed different proportional solving strategies between the two students, which revealed in the course of adjusting values of two given variables to seek new values; student B, due to a limited ability for proportional reasoning, had difficulty in constructing graphs for given situations and interpreting given graphs.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.71-75
/
2020
오픈북 질의응답 문제는 올바른 정답을 고르기 위해 사람들끼리 공유하고 있는 상식정보가 필요한 질의로 이루어져있다. 기계가 사람과 달리 상식 정보를 이용하여 결론을 도출하는 상식 추론을 하기 위해서는 적절한 상식 정보를 논리적으로 사용하여야 한다. 본 연구에서는 적절한 상식정보의 선택과 논리적 추론을 위하여, 질의에 대한 Abstract Meaning Representation (AMR) 그래프를 이용하여 적절한 상식 정보를 선택하고 그의 해석을 용이하게 만들었다. 본 연구에서 제안한 상식 그래프 경로 학습 모델은 오픈북 질의응답 문제에서 대표적 언어모델인 BERT의 성능보다 약 7%p 높은 55.02%의 정확도를 달성하였다.
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.39-48
/
2024
In this study, we propose a method to augment the provided reasoning paths to improve the answer performance and explanatory power of KGQA. In the proposed method, we utilize LLMs and GNNs to retrieve reasoning paths related to the question from the knowledge graph and evaluate reasoning paths. Then, we retrieve the external information related to the question and then converted into triples to answer the question and explain the reason. Our method evaluates the reasoning path by checking inference results and semantically by itself. In addition, we find related texts to the question based on their similarity and converting them into triples of knowledge graph. We evaluated the performance of the proposed method using the WebQuestion Semantic Parsing dataset, and found that it provides correct answers with higher accuracy and more questions with explanations than the reasoning paths by the previous research.
Ontology schema reasoning is used to maintain consistency of concepts and build concept hierarchy automatically. For the purpose, the search of concepts must be inevitably performed. Ontology schema reasoning performs the test of subsumption relationships of all the concepts delivered in the test set. The result of subsumption tests is determined based on the creation of complete graphs, which seriously weighs with the performance of reasoning. In general, the process of creating complete graph has been known as expressive procedure. This process is essential in improving the leading performance. In this paper, we propose a method enhancing the classification performance by identifying unnecessary subsumption test supported by optimized searching method on subsumption relationship test among concepts. It is achieved by propagating subsumption tests results into other concept.
최근 딥러닝의 기술발전으로 자연어 처리 분야에서 Q&A, 문장추천, 개체명 인식 등 다양한 연구가 진행 되고 있다. 딥러닝 기반 자연어 처리에서 좋은 성능을 보이는 트랜스포머 기반 BERT 모델의 성능향상에 대한 다양한 연구도 함께 진행되고 있다. 본 논문에서는 토픽모델인 잠재 디리클레 할당을 이용한 토픽별 지식그래프 분류와 입력문장의 토픽을 추론하는 방법으로 K-BERT 모델을 학습한다. 분류된 토픽 지식그래프와 추론된 토픽을 이용해 K-BERT 모델에서 대용량 지식그래프 사용의 효율적 방법을 제안한다.
Journal of the Korean Society for information Management
/
v.34
no.1
/
pp.177-195
/
2017
This study attempts to infer research fronts using factor graph model based on heterogeneous features. The model suggested by this study infers research fronts having documents with the potential to be cited multiple times in the future. To this end, the documents are represented by bibliographic, network, and content features. Bibliographic features contain bibliographic information such as the number of authors, the number of institutions to which the authors belong, proceedings, the number of keywords the authors provide, funds, the number of references, the number of pages, and the journal impact factor. Network features include degree centrality, betweenness, and closeness among the document network. Content features include keywords from the title and abstract using keyphrase extraction techniques. The model learns these features of a publication and infers whether the document would be an RF using sum-product algorithm and junction tree algorithm on a factor graph. We experimentally demonstrate that when predicting RFs, the FG predicted more densely connected documents than those predicted by RFs constructed using a traditional bibliometric approach. Our results also indicate that FG-predicted documents exhibit stronger degrees of centrality and betweenness among RFs.
KIPS Transactions on Software and Data Engineering
/
v.10
no.8
/
pp.319-330
/
2021
Recently, in the field of open domain natural language question answering, multi-task, multi-hop question answering has been studied extensively. In this paper, we propose a novel deep neural network model using hierarchical graphs to answer effectively such multi-task, multi-hop questions. The proposed model extracts different levels of contextual information from multiple paragraphs using hierarchical graphs and graph neural networks, and then utilize them to predict answer type, supporting sentences and answer spans simultaneously. Conducting experiments with the HotpotQA benchmark dataset, we show high performance and positive effects of the proposed model.
Park, Dong-Suk;Song, Sun-Hee;Na, Ha-Sun;Kim, Moon-Hwan;Bae, Chul-Soo;Ra, Sang-Dong
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.2
/
pp.566-570
/
2005
생물학적 유전자 배열에서 다양한 레벨로 분자 세포 간 네트워크를 입증하여 고 처리를 응용하여 수치학적인 표현 모델 분석으로 정보공학 네트워크를 연구한다. 확률적 그래프 모델을 사용하여 네트워크의 계층적 구성 특성을 이용하여 생물학적 통찰력을 확률함수를 응용해 복잡한 세포 간 네트워크에 대한 고 대역 처리 데이터의 근원인 DNA 마이크로 배열을 응용하여 유전자 베이스네트워크 논리를 유전자 표현 레벨로 나타낸다. 유전자 데이터로부터 확률적 그래프 모델들을 추정 및 분석하고 논리적으로 예측하여 확률적 그래프 모델이 정보공학 네트워크로 확장 추론 한다.
영상 기반 상식 추론(VCR) 문제는 기존의 영상 기반 질문-응답(VQA) 문제들과는 달리, 영상에 포함된 사물들 간의 관계 파악과 답변 근거 제시 등 별도의 상식 추론이 요구되는 새로운 지능 문제이다. 본 논문에서는 입력 데이터(영상, 자연어 질문, 응답 리스트)에서 사물들 간의 관계와 맥락 정보를 추출해내는 모듈들 외에, 별도로 ConceptNet과 같은 외부 지식 베이스로부터 관련 상식들을 직접 가져다 GCN 기반의 지식 그래프 임베딩 과정을 거쳐 추가적으로 활용할 수 있는 모듈들을 포함한 새로운 심층 신경망 모델인 KG_VCR을 제안한다. 제안 모델인 KG_VCR의 세부 설계사항들을 소개하고, VCR 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해 제안 모델의 성능을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.