• Title/Summary/Keyword: 그래프기반 랭킹

Search Result 15, Processing Time 0.019 seconds

Document Summarization Considering Entailment Relation between Sentences (문장 수반 관계를 고려한 문서 요약)

  • Kwon, Youngdae;Kim, Noo-ri;Lee, Jee-Hyong
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.179-185
    • /
    • 2017
  • Document summarization aims to generate a summary that is consistent and contains the highly related sentences in a document. In this study, we implemented for document summarization that extracts highly related sentences from a whole document by considering both similarities and entailment relations between sentences. Accordingly, we proposed a new algorithm, TextRank-NLI, which combines a Recurrent Neural Network based Natural Language Inference model and a Graph-based ranking algorithm used in single document extraction-based summarization task. In order to evaluate the performance of the new algorithm, we conducted experiments using the same datasets as used in TextRank algorithm. The results indicated that TextRank-NLI showed 2.3% improvement in performance, as compared to TextRank.

An Efficient Expert Discrimination Scheme Based on Academic Documents (학술 문헌 기반 효율적인 전문가 판별 기법)

  • Choi, Do-Jin;Oh, Young-Ho;Pyun, Do-Woong;Bang, Min-Ju;Jeon, Jong-Woo;Lee, Hyeon-Byeong;Park, Deukbae;Lim, Jong-Tae;Bok, Kyoung-Soo;Yoo, Hyo-Keun;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.1-12
    • /
    • 2021
  • An objective expert discrimination scheme is needed for finding researchers who have insight and knowledge about a particular field of research. There are two types of expert discrimination schemes such as a citation graph based method and a formula based method. In this paper, we propose an efficient expert discrimination scheme considering various characteristics that have not been considered in the existing formula based methods. In order to discriminate the expertise of researchers, we present six expertise indices such as quality, productivity, contributiveness, recentness, accuracy, and durability. We also consider the number of social citations to apply the characteristics of academic search sites. Finally, we conduct various experiments to prove the validity and feasibility of the proposed scheme.

Finding Influential Users in the SNS Using Interaction Concept : Focusing on the Blogosphere with Continuous Referencing Relationships (상호작용성에 의한 SNS 영향유저 선정에 관한 연구 : 연속적인 참조관계가 있는 블로고스피어를 중심으로)

  • Park, Hyunjung;Rho, Sangkyu
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.4
    • /
    • pp.69-93
    • /
    • 2012
  • Various influence-related relationships in Social Network Services (SNS) among users, posts, and user-and-post, can be expressed using links. The current research evaluates the influence of specific users or posts by analyzing the link structure of relevant social network graphs to identify influential users. We applied the concept of mutual interactions proposed for ranking semantic web resources, rather than the voting notion of Page Rank or HITS, to blogosphere, one of the early SNS. Through many experiments with network models, where the performance and validity of each alternative approach can be analyzed, we showed the applicability and strengths of our approach. The weight tuning processes for the links of these network models enabled us to control the experiment errors form the link weight differences and compare the implementation easiness of alternatives. An additional example of how to enter the content scores of commercial or spam posts into the graph-based method is suggested on a small network model as well. This research, as a starting point of the study on identifying influential users in SNS, is distinctive from the previous researches in the following points. First, various influence-related properties that are deemed important but are disregarded, such as scraping, commenting, subscribing to RSS feeds, and trusting friends, can be considered simultaneously. Second, the framework reflects the general phenomenon where objects interacting with more influential objects increase their influence. Third, regarding the extent to which a bloggers causes other bloggers to act after him or her as the most important factor of influence, we treated sequential referencing relationships with a viewpoint from that of PageRank or HITS (Hypertext Induced Topic Selection).

A Global-Interdependence Pairwise Approach to Entity Linking Using RDF Knowledge Graph (개체 링킹을 위한 RDF 지식그래프 기반의 포괄적 상호의존성 짝 연결 접근법)

  • Shim, Yongsun;Yang, Sungkwon;Kim, Hong-Gee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.129-136
    • /
    • 2019
  • There are a variety of entities in natural language such as people, organizations, places, and products. These entities can have many various meanings. The ambiguity of entity is a very challenging task in the field of natural language processing. Entity Linking(EL) is the task of linking the entity in the text to the appropriate entity in the knowledge base. Pairwise based approach, which is a representative method for solving the EL, is a method of solving the EL by using the association between two entities in a sentence. This method considers only the interdependence between entities appearing in the same sentence, and thus has a limitation of global interdependence. In this paper, we developed an Entity2vec model that uses Word2vec based on knowledge base of RDF type in order to solve the EL. And we applied the algorithms using the generated model and ranked each entity. In this paper, to overcome the limitations of a pairwise approach, we devised a pairwise approach based on comprehensive interdependency and compared it.

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.