• Title/Summary/Keyword: 그래프기반 랭킹

Search Result 15, Processing Time 0.023 seconds

A Similarity Measurement Scheme using Skyline Queryin Large-scale Graph Environments (대용량 그래프 환경에서 스카이라인을 이용한 서브 그래프 유사도 측정 기법)

  • Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.47-48
    • /
    • 2017
  • 최근 각종 실험 장비의 발전에 따라 유사 서브 그래프 매칭에 대한 연구가 활발하게 진행되고 있다. 하지만 유사 서브 그래프 매칭은 다수의 최종 결과들이 반환되었을 경우, 사용자는 어떤 결과가 자신에게 가장 유의미한 결과인지를 판별하기 힘든 문제점이 존재한다. 본 논문에서는 대용량 그래프 환경에서 스카이라인을 이용한 서브 그래프 유사도 측정 기법을 제안한다. 제안하는 기법은 스카이라인 기법과 피드백에 기반한 랭킹을 수행하여 유사 서브 그래프 매칭에서 사용자에게 유의미한 결과를 반환한다.

  • PDF

Improved Concept-base Search System Using HITS algorithm on Conceptual Graph (HITS알고리즘을 적용한 개념그래프 기반검색시스템의 성능개선)

  • 배환국;박호성;이상준;김기태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.470-472
    • /
    • 2003
  • 본 논문에서는 개념 그래프 기반 검색 시스템의 검색의 성능을 개선시키고자 Hits 알고리즘을 적용하였다. 기존 개념 그래프 기반 검색 시스템의 anchor text분석을 통하여 개념을 추출하고 있는 시스템에서 더 나아가 하이퍼 링크의 선호도의 특성을 살려 하이퍼링크에 문서가 얼마나 연결되어 있는지, 참조하고 있는지에 따라 해당 검색된 문서들의 중요도를 찾아서 순위를 매기는 실험을 하였다. 종래에는 해당 검색어의 빈도순으로 개념의 결과를 나타내 주었는데, 본 시스템 구현 후에 랭킹알고리즘을 적용하여 해당검색에 유용한 정보를 가지고 있는 페이지들(authorities)과 유용한 정보를 보유하고 있는 페이지의 링크를 보유하고 있는 페이지들(hubs)를 각각 순위 순으로 보여주게 되었다. 그리하여 사용자는 실제 검색시에 개념상으로 분류된 문서 중에 중요도가 높은 문서를 사용자에게 우선으로 접하게 되었으며, hub어 의해서 중요도가 높은 문서를 한눈에 볼 수도 있을 뿐 아니라, anchor text 어서 나타나지 않은 중요한 정보를 가진 문서도 검색할 수 있었다.

  • PDF

Document Summarization Using Mutual Recommendation with LSA and Sense Analysis (LSA를 이용한 문장 상호 추천과 문장 성향 분석을 통한 문서 요약)

  • Lee, Dong-Wook;Baek, Seo-Hyeon;Park, Min-Ji;Park, Jin-Hee;Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.656-662
    • /
    • 2012
  • In this paper, we describe a new summarizing method based on a graph-based and a sense-based analysis. In the graph-based analysis, we convert sentences in a document into word vectors and calculate the similarity between each sentence using LSA. We reflect this similarity of sentences and the rarity scores of words in sentences to define weights of edges in the graph. Meanwhile, in the sense-based analysis, in order to determine the sense of words, subjectivity or objectivity, we built a database which is extended from the golden standards using Wordnet. We calculate the subjectivity of sentences from the sense of words, and select more subjective sentences. Lastly, we combine the results of these two methods. We evaluate the performance of the proposed method using classification games, which are usually used to measure the performances of summarization methods. We compare our method with the MS-Word auto-summarization, and verify the effectiveness of ours.

Fast Random Walk with Restart over a Signed Graph (부호 그래프에서의 빠른 랜덤워크 기법)

  • Myung, Jaeseok;Shim, Junho;Suh, Bomil
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.2
    • /
    • pp.155-166
    • /
    • 2015
  • RWR (Random Walk with Restart) is frequently used by many graph-based ranking algorithms, but it does not consider a signed graph where edges may have negative weight values. In this paper, we apply the Balance Theory by F. Heider to RWR over a signed graph and propose a novel RWR, Balanced Random Walk (BRW). We apply the proposed technique into the domain of recommendation system, and show by experiments its effectiveness to filter out the items that users may dislike. In order to provide the reasonable performance of BRW in the domain, we modify the existing Top-k algorithm, BCA, and propose a new algorithm, Bicolor-BCA. The proposed algorithm yet requires employing a threshold. In the experiment, we show how threshold values affect both precision and performance of the algorithm.

Modeling a Multi-Agent based Web Mining System on the Hierarchical Web Environment (계층적 웹 환경에서의 멀티-에이전트 기반 웹 마이닝 시스템 설계)

  • 윤희병;김화수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.27-30
    • /
    • 2003
  • 웹 기반하에서 사용자의 질의에 대한 효율적인 검색결과를 제공하기 위하여 다양한 검색 알고리즘들이 개발되어 왔으며, 이러한 알고리즘들의 대부분은 사용자의 선호도나 편의성을 고려하였다. 그러나 지금까지 개발된 검색 알고리즘들은 일반적으로 웹이라는 수평의 비계층적인 웹 환경에서 개발된 것으로서 기업의 전사적 네트워크와 같이 계층적이고 기능적으로 복잡하게 구성되어 있는 웹 기반 환경에서는 적용하기가 힘든 실정이다. 본 논문에서는 이러한 특수한 웹 기반 환경하에서 사용자에게 효율적으로 마이닝 결과를 제공할 수 있는 멀티-에이전트 기반의 웹 마이닝 시스템을 제안한다. 이를 위해 우리는 계층적 웹 기반 환경이라는 네트워크 모델을 제시하며, 제시된 웹 환경에서 적용할 수 있는 4개의 협력 에이전트와 14개의 프로세스 모듈을 가진 멀티-에이전트 기반의 웹 마이닝 시스템을 설계한다. 그리고 각 에이전트에 대한 세부기능을 계층적 환경을 고려하여 모듈별로 설명하며 특히, 새로운 머징 에이전트와 개선된 랭킹 알고리즘을 그래프 이론을 적용하여 제안한다.

  • PDF

Modeling a Multi-Agent based Web Mining System on the Hierarchical Web Environment (계층적 웹 환경에서의 멀티-에이전트 기반 웹 마이닝 시스템 설계)

  • Yoon, Hee-Byung;Kim, Hwa-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.643-648
    • /
    • 2003
  • In order to provide efficient retrieving results for user query on the web environment, the various searching algorithms have developed and considered user's preference and convenience. However, the searching algorithms are developed on the horizontal and non hierarchical web environment in general and could not apply to the complex hierarchical and functional web environments such like the enterprise network. In this paper, we purpose the multi-agent based web mining system which can provide the efficient mining results to the user on the special web environment. For doing this, we suggest the network model with the hierarchical web environment and model the multi agent based web mining system which has four corporation agents and fourteen process modules. Then, we explain the detailed functions of each agent considered the hierarchical environment according to the module. Especially, we purpose the new merging agent and improved ranking algorithm by using the graph theory.

Cluster-based keyword Ranking Technique (클러스터 기반 키워드 랭킹 기법)

  • Yoo, Han-mook;Kim, Han-joon
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.529-532
    • /
    • 2016
  • 본 논문은 기존의 TextRank 알고리즘에 상호정보량 척도를 결합하여 군집 기반에서 키워드 추출하는 ClusterTextRank 기법을 제안한다. 제안 기법은 k-means 군집화 알고리즘을 이용하여 문서들을 여러 군집으로 나누고, 각 군집에 포함된 단어들을 최소신장트리 그래프로 표현한 후 이에 근거한 군집 정보량을 고려하여 키워드를 추출한다. 제안 기법의 성능을 평가하기 위해 여행 관련 블로그 데이터를 이용하였으며, 제안 기법이 기존 TextRank 알고리즘보다 키워드 추출의 정확도가 약 13% 가량 개선됨을 보인다.

Generating Pairwise Comparison Set for Crowed Sourcing based Deep Learning (크라우드 소싱 기반 딥러닝 선호 학습을 위한 쌍체 비교 셋 생성)

  • Yoo, Kihyun;Lee, Donggi;Lee, Chang Woo;Nam, Kwang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.1-11
    • /
    • 2022
  • With the development of deep learning technology, various research and development are underway to estimate preference rankings through learning, and it is used in various fields such as web search, gene classification, recommendation system, and image search. Approximation algorithms are used to estimate deep learning-based preference ranking, which builds more than k comparison sets on all comparison targets to ensure proper accuracy, and how to build comparison sets affects learning. In this paper, we propose a k-disjoint comparison set generation algorithm and a k-chain comparison set generation algorithm, a novel algorithm for generating paired comparison sets for crowd-sourcing-based deep learning affinity measurements. In particular, the experiment confirmed that the k-chaining algorithm, like the conventional circular generation algorithm, also has a random nature that can support stable preference evaluation while ensuring connectivity between data.

A Study on the Semantic Match Making for Intelligent Web Service (지능형 웹 서비스를 위한 시맨틱 매치 메이킹에 관한 연구)

  • 김지영;양진혁;공유근;정인정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-36
    • /
    • 2003
  • 지능형 웹 서비스를 효과적으로 구현하기 위해서는 다양한 사용자들이 필요로 하는 데이터를 만족스럽게 제공할 수 있는 매치 메이킹의 구현이 중요한 과제이다. 이를 위한 관련 연구로 필터링 메커니즘을 제안하고 있는 LARKS, 브로커에이전트를 이용한 InfoSlueth, RDF 그래프 매칭 연구 및 DL 기반의 매칭 방법 등이 있다. 그러나 기존 연구들은 등급 개념을 가지는 유연한 검색 결과를 제공하지 못한다는 큰 문제점을 가진다. 본 논문에서는 기존 방법들을 개선하기 위한 노력으로서. 서비스 매치 메이킹의 결과들에 등급(랭킹)을 부터 하는 시맨틱 매치 메이커를 제안한다. 본 논문에서 제안하는 시맨틱 매치 메이커는 서비스 제공자와 서비스 요청자 사이의 유연한 매칭을 제공하여 지능형 웹 서비스를 효과적으로 수행 할 수 있게 한다. 본 논문에서 제안한 방법론은 서비스 광고 및 요청을 표현하기 위한 언어로 DAML-S를 채택하였고. DAML-S의 서비스 프로파일 뿐만 아니라 프로세스 모델 온톨로지 모두를 고려하는 새로운 접근법이다.

  • PDF