• Title/Summary/Keyword: 그라프트

Search Result 233, Processing Time 0.027 seconds

Ultraviolet Photografting Reaction of Acrylamide onto Styrene-Butadiene Rubber (Styrene-Butadiene 고무의 아크릴아미드 UV 광그라프팅 반응)

  • Lee, K.I.;Ryu, S.H.
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.363-369
    • /
    • 1998
  • Photografting reaction onto styrene-butadiene rubber (SBR) as a function of monomer concentration, irradiation time and carbon black content has been studied using ultraviolet (UV). Acrylamide and benzophenone are used as monomer and photoinitiator, respectively. FT-IR ATR and static contact angle analysis using distilled water are used to measure the graft ratio of acrylamide onto SBR surface. Graft ratio of acrylamide increases with acrylamide concentration and irradiation time and contact angle tends to decrease with increasing graft ratio. It is observed that graft ratio increases with carbon black content.

  • PDF

Study on Graft Polymerization of Acrylate and Methacrylate Monomers onto the Carbon Black Surface (Carbon Black 표면에의 아크릴레이트 및 메타크릴레이트의 그라프트 중합에 관한 연구)

  • Goo, Hyung-Seo;Chang, Byung-Kwon;Kim, Yong-Moo;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.395-405
    • /
    • 1994
  • The various functional groups, such as hydroxyl(-OH), carboxyl(-COOH) and quinonic oxygen(OC<) on the carbon black(abbreviated to CB) surface were activated with n-butyl lithium solution in n-hexane and then acrylate and methacrylate monomers were graft polymerized onto these activated anionic sites and CB-grafted polymers were obtained. To separate homopolymers from reaction mixture, non-solvent precipitation method or centrifugal separating method were applied. Subsequently, conversion, grafting ratio and efficiency were determined at various reaction temperatures and times. In case of acrylates, the grafting ratio showed 20~30% but methacrylates showed 150~200%. Also the anion polymerizations between CB and monomers were nearly reached to equilibrium state within one or two hours under each reaction temperatures but conversion and grafting ratio were increased a little with reaction temperature increase. In colloidal dispersion stability test, before heat-drying, the all CB-grafted polymers showed good dispersed stability in good solvents for acrylic and methacrylic homopolymers. Futhermore, CB-polymethacrylates were found to show excellent collidal properties for good solvents of methacrylic homopolymer even after heat-drying. Identification of the grafted polyacrylates and polymethacrylates onto the CB surface was performed by FT-IR spectroscopy. In addition, electric resistance values of CB-grafted polymers were measured by Four-probe method, and the increase of the grafting ratio showed the increase of the surface resistance.

  • PDF

Studies on the Graft Polymerization of Polyethyleneglycol Monomethacrylate onto Chitosan and Drug(Vitamin B12) Permeation Behavior (키토산과 폴리에틸렌글리콜 모노메타크릴레이트의 그라프트중합과 약물(Vitamin B12)방출에 관한 연구)

  • Chung, Joo-Eun;Chung, Byung-Ok;Chang, Byung-Kwon;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.524-536
    • /
    • 1994
  • Chitosan is known to be a good biocompatible natural polymer. Polyethyleneglycol monomethacrylates(PEGM) were grafted onto chitosan and their reaction conditions and properties of the graft polymers obtained were estimated. Using ceric ammonium nitrate(CAN) as the initiator, the optimum condition for graft polymerization was determined amount of the initiator and monomer concentrations and reaction time. Grafting yields such as total conversion, the percentage of grafting and the efficiency of grafting were calculated and examined the optimum reaction condition for high grafting yields. The percentage of grafting and total conversion were maximum at condition that the concentration of initiator was $4{\sim}5{\times}10^{-3}M$, the concentration of monomer was 0.5~0.6M, the reaction time was 2~3 hours and the reaction temperature was about $40^{\circ}C$. Thermal characteristics, solubility for chitosan solvents and inherent viscosity of synthesized graft copolymers were investigated. In high initiator concentration, characteristics of chitosan were greatly diminshed. In case of inherent viscosities, chitosan-g-PE-90 was 2.81 dl/g, chitosan-g-PE-200, 3.01dl/g and chitosan-g-PE-350, 4.93dl/g. And a tendency of viscosity increase depending on the length of ethylene oxide residue was confirmed. Degree of swelling, tensile strength, elongation of membrane prepared from graft copolymers were determined. Properties of graft copolymers were affected by percentage of grafting and length of ethylene oxides residue in polyethylene glycol monomethacrylates. Tensile strength, elongation and degree of swelling of graft copolymers were remarkably improved than chitosan. As percentage of grafting increased, the amount of drug permeation was also increased.

  • PDF

Melt Grafting of Citraconic Acid onto an Ethylene-Propylene-Diene Terpolymer (EPDM) -Effect of Reaction Conditions and Initiator Type on the Melt Grafting of Citraconic Acid onto EPDM- (EPDM고무와 씨트라코닉산의 melt grafting - 반응조건과 개시제에 따른 영향 연구 -)

  • Kim, Jung-Soo;Bae, Jong-Woo;Lee, Jin-Hyok;Oh, Sang-Taek;Kim, Gu-Ni;Lee, Young-Hee;Kim, Han-Do
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Melt grafting of citraconic acid (CCA) onto an ethylene-propylene-diene terpolymer (EPDM) with various peroxide initiators was performed using a Haake Rheocorder. Finding the optimum running condition and concentration is critical for effective grafting and performance of grafted material. Therefore, this study focused on the effects of mixing (reaction) condition and monomer/initiator dosages on the grafting degree, grafting efficiency and crosslinking degree (gel content), melt flow index and mechanical properties of CCA-g-EPDM. As the grafting degree/crosslinking degrees increased, the tensile strength increased significantly, but elongation at break and melt flow index decreased. The initiator 2,5-dimethyl-2,5-di(tert-butyl peroxy)-hexane (T-101) appeared to meet for the best grafting(2.31%). The grafting degree increased markedly with increasing monomer CCA/initiator T-101 contents. The grafting degree also increased with increasing mixing temperature/time, and then leveled off or decreased/increased a little. The optimum monomer/initiator dosages and reaction temperature/time were found to be about 5/0.05 wt% and $180^{\circ}C$/15min, respectively.

Effect of Solvent on the Grafting Polymerization of Polyethylene Wax with Maleic anhydride (폴리에틸렌 왁스와 무수 말레인산의 그라프팅 중합 반응에서 용매가 미치는 영향)

  • Yu, Si-Won;Choi, Joong-So;Na, Jae-Sik
    • Resources Recycling
    • /
    • v.23 no.1
    • /
    • pp.48-57
    • /
    • 2014
  • In this study, we have investigated the influence of the nature of solvent on the grafting reaction of maleic anhydride onto polyethylene wax obtained as a by-product in a high density polyethylene plant. The results show that the grafting ratio in xylene as a solvent was higher than toluene. This is because xylene has excellent monomer solubility, swelling property and miscibility. It has been also observed that grafting degree shows an initial jump in percentage of grafting with increasing amount of solvent, from 0% v/w to 200% v/w giving maximum grafting in 200% v/w and then slightly decreases on further increase in the amount of solvent and becomes almost constant. It can be also seen that gel content was not formed under the use of solvent. It means that solvent prevented cross-linking reaction due to chain transfer reactions to solvent molecules. Studies of melt viscosity at $140^{\circ}C$ showed that viscosity increased after grafting of maleic anhydride onto polyethylene wax.

Graft Copolymerization to Proteins (I). Cerium (IV) Ion-Initiated Graft Copolymerization of Vinyl Monomers to Silk Fibroins (단백질에 대한 그라프트 공중합 (제1보). Cerium (IV) 이온에 의한 비닐 단위체의 견섬유에 대한 그라프트 공중합)

  • Iwhan Cho;Kwang-Duk Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.299-308
    • /
    • 1976
  • Cerium (Ⅳ) ion-initiated graft copolymerizations of acrylamide and of acrylonitirile to silk fibroins were investigated. When acrylamide was used, the change in ceric ammonium nitrate concentration exhibited a maximum in degree of grafting at 0.01 M. Also observed was that the change in acetic acid content in reaction media gave a maximum in degree of grafting at 7% acetic acid in water. Degree of grafting was increased generally with increase in acrylamide concentration reaction time and reaction temperature. When acrylonitrile monomer was used for grafting,different results were obtained. Addition of nitric acid was more effective in enhancing the degree of grafting than the addition of acetic acid.Generally the grafting of acrylonitrile to silk fibroins was less efficient than the grafting of acrylamide. The portion of grafted silk fibroins insoluble in Lowe's reagent exhibited the IR absorption bands characteristics to both vinyl polymers and silk fibroins, indicating the grafting of vinyl monomers to silk fibroins. To examine the molecular weight of graft vinyl polymer, a sample of grafted silk was hydrolyzed by 10% sodium hydroxide. Viscosity measurements indicated that the molecular weight of the graft polymer was in the range of 105.

  • PDF

Pre-Irradiation Grafting of Acrylic Acid onto Polyethylene Film (전조사법에 의한 아크릴산의 폴리에틸렌 필름에 대한 그라프트 반응)

  • Nho, Young Chang;Jin, Joon-Ha;Lee, Myun Zu
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Acrylic acid was graft-copolymerized on polyethylene film in the presence of additives such as acid and $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ using peroxide grafting technique by ${\gamma}$-ray and electron beam, and the effect of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ and acid on the grafting yield was evaluated. The grafting mechanism and the physical property of grafted films were also examined. The results showed that the inclusion of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ in acidified acrylic acid grafting solution was extremely beneficial and led to a most unusual enhancement effect in the radiation grafting. In the other hand, inclusion of mineral acid in the grafting solution in the absence of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ could not lead to he suitable grafting reaction by the severe homopolymerization of acrylic acid. The addition of $H_2SO_4$, and HCl led to much higher grafting yield than $HNO_3$and $CH_3COOH$. It was shown that grafting yield of ${\gamma}$-ray irradiated-polyethylene was higher than that of electron beam irradiated polyethylene.

  • PDF

A Study on Synthesis and Hydrolysis of the Maleated Polyethylene Wax (무수말레인산으로 그라프트된 폴리에틸렌 왁스의 중합과 가수분해에 대한 연구)

  • Yu, Si-Won;Choi, Joong-So;Na, Jae-Sik
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.393-400
    • /
    • 2013
  • In this study, Polyethylene wax, which was produced in manufacturing process of high density polyethylene was grafted with maleic anhydride (MAH). The influences of reaction parameters on the graft polymerization as well as the effect of hydrolysis of the anhydride functions were investigated. The results show that the grafting degree increased and conversion of maleic anhydride decreased with an increase in MAH monomer content. This means the highest grafting efficiency for the reaction can be met when MAH monomer content is about 15 wt%. DCP (dicumyl peroxide) and DTBP (di-tert-butyl peroxide) have been used as the initiator and the highest yield of grafting was obtained when the initiator content is about 0.5 wt%. However, It can be seen that the gel content values of this polyethylene wax grafted MAH were below 2%. It was also observed that the grafting degree increased with an increase in reaction temperature and the maximum value was reached 2 hours later. Although MAH functions grafted onto polyethylene wax were mainly in the carboxylic acid forms, some anhydride form of MAH appeared in over 5% of grafting degree. As a result of hydrolysis reaction, it was observed that the conversion of anhydride group into carboxylic acid group was reached up to 10%.

A Study on the Compatibility of PMMA-Poly(butadiene-g-MMA) Blends (PMMA와 Poly(butadiene-g-MMA) 블렌드의 상용성에 관한 연구)

  • Park, Sung-Ick;Han, Seung;Suh, Kyung-Do;Mun, Tak-Jin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.182-188
    • /
    • 1994
  • Poly(butadiene-g-MMA) was synthesized by grafting methyl metharcylate on polybutadiene which is intrinsically incompatible with poly(mothy methacrylate)(PMMA) and this graft copolymer was blended with PMMA. Mechanical properties of PMMA-poly(butadiene-g-MMA) blends and PMMA-polybutadiene blends, such as impact strength, tensile strength and haze were determined. Morphological changes of the blends as a function of graft percentage were observed by scanning electron microscopy. Mechanical properties of PMMA-poly(butadiene-g-MMA) blends were better than PMMA-polybutndiene blends. Especially, mechanical properties of PMMA-poly(butadiene-g-MMA) blends were improved nth increasing graft percentage of MMA.

  • PDF

Surface Properties and Blood Compatibility of Modified Cellulose Membrane (변성 셀룰로오즈막의 표면물성과 혈액 적합성)

  • Lee, Soon Hong;Huh, Hoon;Lee, Young Moo;Kim, Jin Il;Park, Young Hoon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.188-195
    • /
    • 1993
  • Polyelectrolyte complexes and graft copolymers as biomaterials were synthesized from the water soluble cellulose derivatives. Polyelectrolyte complexes have been prepared from carboxymethyl cellulose (CMC) and gelatin. Graft copolymers(Mc-g-AA) were synthesized by grafting acrylic acid (AA) onto methyl cellulose(MC). (Mc-g-AA) and gelatin polyelectrolyte complexes were also prepared. The optimum conditions of each sample were investigated after chemical crosslinking or heat treatment. The preliminary results show that these materials might be interesting for biomedical applications.

  • PDF