• Title/Summary/Keyword: 그라우팅 공법

Search Result 199, Processing Time 0.026 seconds

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.

Pre-grouting for CHI of EPB shield TBM in difficult grounds: a case study of Daegok-Sosa railway tunnel (복합지반 EPB TBM 커터교체를 위한 그라우팅 수행 사례)

  • Kang, Sung-Wook;Chang, Jaehoon;Lee, Jae-Won;Kim, Dae-Young;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.281-302
    • /
    • 2021
  • Railway projects have been consistently increasing in Korea. In relation to this trend, the mechanized tunneling using Tunnel Boring Machine (TBM) is preferably applied for mining urban areas and passing under rivers. The TBM tunneling under difficult grounds like mixed faces with high water pressure could require ground improvements for stable TBM advance or safe cutter head intervention (CHI). In this study, pre-grouting works for CHI in Daegok-Sosa railway project are presented in terms of the grouting zone design, the executions and the results, the lessons learned from the experience. It should be mentioned that the grouting from inside TBM was carried out several times and turned out to be inefficient in the project. Therefore, grouting experiences from the surface are highlighted in this study. Jet grouting was implemented on CHI points on land, while permeation grouting off shore in the Han River, which mostly allow to access the cutter head of TBM in free air with stable faces. The results of CHI works have been analyzed and the lesson learned are suggested.

Reduced model experiment to review applicability of tunnel pillar reinforcement method using prestress and steel pipe reinforcement grouting (프리스트레스 및 강관보강 그라우팅을 이용한 터널 필라부 보강공법의 적용성 검토를 위한 축소모형 실험)

  • Kim, Yeon-Deok;Lee, Soo-Jin;Lee, Pyung-Woo;Yun, Hong-Su;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.495-512
    • /
    • 2022
  • Due to the concentration of population in the city center, the aboveground structures are saturated, and the development of underground structures becomes important. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy, and workability to the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability, and economic feasibility, it is necessary to review the theoretical and numerical analysis of the actual behavior mechanism. Therefore, a scaled-down model experiment was conducted. The reduced model experiment was divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), PC strand + steel pipe reinforcement grouting (Case 2), and no reinforcement (Case 3), and the displacement of the pillar and the earth pressure applied to the wall were measured. Through experiments, it was confirmed that the PC stranded wire + steel pipe reinforcement grouting + prestress method is the most excellent reinforcement method among various construction methods. It was judged that it could be derived.

Numerical investigation on the effect of backfill grouting on ground behavior during shield TBM tunneling in sandy ground (사질토 지반을 통과하는 쉴드 TBM에서 뒤채움 그라우팅이 지반 거동에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Chang, Seokbue;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.375-392
    • /
    • 2018
  • The shield TBM method is widely adopted for tunneling works in urban area because it has more beneficial ways to control settlement at ground surface than conventional mined tunneling. In the shield tunneling, backfill grouting at tail void is crucial because it is supposed not only to restraint ground deformation around tail void during excavation but also to compensate precedent ground settlement by pushing up the ground with highly pressurized grout. However, the tail void grouting has been found to be ineffective for settlement compensation particularly in sandy ground, which might be caused by complicate interaction between ground and tail void grouting. In this paper, the effects of tail void grouting on behavior of ground in shield TBM tunneling were investigated based on 3-dimensional finite element analyses. The results of numerical analyses indicated that backfill grouting actually reduces settlement by degrading settlement increasing rate in excavation, which means decrease of volume loss. Meanwhile, the grouting could not contribute to compensate the precedent settlement, because reduction of volume loss by grouting was found to be counterbalanced by volume change of ground.

A Study on the Vibration Reduction Effect of a Soil Grouting (지반내 그라우팅공법에 의한 지반진동감소 연구)

  • Huh, Young;Cho, Jun-Sang;Koo, Yong-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.104-110
    • /
    • 1995
  • 지반과 구조물의 동적 상호작용은 건설분야에서의 중요한 현상으로, 특히 지반을 통해 인근구조물로 전달되는 진동은 구조물 자체의 구조적인 문제 뿐 아니라 그 속에 거주하는 사람이나 설비에 대한 안전성 또는 사용성에 나쁜 영향을 야기할 수 있다. 본 논문에서는 이러한 진동을 저감시키기 위해, 지반내에 정상적인 진동전파를 방해하는 구조물을 시공하여 진동 저감효과를 만들어 내는 방법을 연구하였다. 이러한 연구의 발상은 다음과 같다. 충진지반에서의 지반진동의 진폭을 해석하면서 진동의 크기가 기저암의 위치에 따라 큰 영향을 받는 것을 알았고 이로부터 지반내에 인위적인 층을 만들수 있다면 지반진동의 크기를 변화시킬 수 있지 않을까라는 생각에서 본 연구를 시작하였다. 또한 지반 내에서의 정상적인 진동의 전파를 방해하기 위한 차진 구조물을 만드는 방법은 연약지반의 강도중대 또는 차수의 목적으로 주로 사용하고 있는 그라우팅공법의 사용이 가능할 것이므로, 기존의 그라우팅현장에서 만들어진 지반의 물성치들을 사용하여 경계요소법에 의한 수치해석적 방법을 택하였다. 본 연구에서는 그라우팅공법의 시공성에 관한 것은 포함되지 않는다. 본 논문에서는 지반의 구조를 경사구조와 수평지반구조라는 두가지 특징적인 경우에 대해 검토하였다. 이중 경사진 기저암층을 가진 지반의 경우에는 기저암에서 진동의 비대칭적인 반사에 의해 수평기저암에서와는 달리 기저암의 한쪽에서 다른쪽에 비해 큰 진동이 발생한다. 그라우팅층의 효과를 검토하기 위한 연구의 순서는 일정주파수의 조화진동에 대해 먼저 여러 가지 크기의 그라우팅층과 함께 블록으로 볼 수 있는 크기의 그라우팅층에 대해 진동저감효과를 해석하였고, 이를 통해 보강층의 소요크기 및 최적위치를 구하였다. 사용된 물성치는 실제 지하철 건설현장에서 나타난 지반물성치 및 그라우팅후의 지반강도 및 전단파전파속도를 이용하였다. 또한 마지막에서 검토된 기차하중에 대한 효과를 알아보기 위해 사용된 기차운행에 의한 지반가속도도 역시 측정된 값을 사용하였다. 그러나 당시의 기차운행속도가 낮아 정상적인 운행에서는 더 큰 값이 나올 것으로 판단되었으나 측정된 값을 그대로 사용하였다.

  • PDF

Pullout Characteristics of Pressure Reinjection-Grouted Reinforcements in Clay (점성토 지반에 설치된 압력재주입 그라우팅 보강재의 인발특성)

  • Seo, Jungwon;Kim, Nara;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.83-89
    • /
    • 2012
  • Anchor, soil nail and micropile have been widely used for slope reinforcement and foundation. These all methods need grouting work after placing reinforcing member. The pressure injection-grouting techniques helps to increase the bearing capacity of reinforcing member by enhancing larger effective pile diameter and increasing the radial stresses acting on the grout body and causing irregular surface. However, the pressure reinjection-grouting techniques is not commonly used because grouting equipment and practical application example are short and the verification of reinforcing effect is difficult. In this study, the laboratory test was performed to evaluate the reinforcing effect with variation of grouting methods in clay. As a result of the test, the pressure reinjection-grouting techniques showed that the pullout capacity of reinforcing member increased up to 1.22~2.61 times comparing to the gravity fill techniques.

A comparative analysis of prediction and measurement for reinforcement effect of face bolts (수치해석 및 계측자료 분석을 통한 막장볼트의 보강효과에 관한 연구)

  • Seo, Kyoung-Won;Kim, Woong-Ku;Baek, Ki-Hyun;Kim, Jin-Woung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.359-368
    • /
    • 2010
  • Unlike in Korea where steel pipe-reinforced multistep grouting is of commonly used methods for tunnel reinforcement, face bolt method is more widely used due to its better workability and lower construction cost in other countries. In this paper, the effects of both methods after tunnel failure were numerically analyzed and verified based on the oversea construction experiences. As a result it is concluded that the face bolt method may be effective to reinforcement especially when there are some fractured zones developed in the face of tunnel.

Numerical study on evaluation of grout diffusion range by the conditions of steel pipe reinforced grouting method (강관보강그라우팅 주입 조건에 따른 그라우트 확산 범위 평가에 관한 수치해석적 연구)

  • Jun-Beom An;Gye-Chun Cho;Yuna Lee;Jaewon Lee;Kyeongnam Min;Gukje Jo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.345-363
    • /
    • 2024
  • Steel pipe reinforced grouting method has been widely used to strengthen the crown of tunnel face and prevent groundwater leakage during tunnel excavation. Various injection procedures without sealing have recently been suggested to enhance efficiency. There are two representative injection methods. One is simultaneous injection in segmented batches, and the other is multiple injection using the external packer. The pros and cons of each method were discussed in terms of construction duration and equipment. However, it has yet to be discussed how the injection procedure affects the grout diffusion range in the ground. This study aims to evaluate the grout diffusion range quantitatively by considering the practical grouting sequences. The grout viscosity was measured by laboratory testing. Then, the numerical modeling was structured using the commercial computational fluid dynamics software. Finally, the grout diffusion range affected by the injection procedure and ground conditions was evaluated by performing the numerical parametric study. The results showed that the injection method highly affected the grout diffusion range, especially for inhomogeneous soil. Consequently, it is anticipated that the proper method of steel pipe reinforced grouting will be suggested.

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.