• Title/Summary/Keyword: 그라디언트 부스트

Search Result 2, Processing Time 0.018 seconds

Convergence study to predict length of stay in premature infants using machine learning (머신러닝을 이용한 미숙아의 재원일수 예측 융복합 연구)

  • Kim, Cheok-Hwan;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.271-282
    • /
    • 2021
  • This study was conducted to develop a model for predicting the length of stay for premature infants through machine learning. For the development of this model, 6,149 cases of premature infants discharged from the hospital from 2011 to 2016 of the discharge injury in-depth survey data collected by the Korea Centers for Disease Control and Prevention were used. The neural network model of the initial hospitalization was superior to other models with an explanatory power (R2) of 0.75. In the model added by converting the clinical diagnosis to CCS(Clinical class ification software), the explanatory power (R2) of the cubist model was 0.81, which was superior to the random forest, gradient boost, neural network, and penalty regression models. In this study, using national data, a model for predicting the length of stay for premature infants was presented through machine learning and its applicability was confirmed. However, due to the lack of clinical information and parental information, additional research is needed to improve future performance.

Predicting Determinants of Seoul-Bike Data Using Optimized Gradient-Boost (최적화된 Gradient-Boost를 사용한 서울 자전거 데이터의 결정 요인 예측)

  • Kim, Chayoung;Kim, Yoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.861-866
    • /
    • 2022
  • Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.