• Title/Summary/Keyword: 그늘

Search Result 208, Processing Time 0.02 seconds

Suggestions for Improving the Emergence Rate of Aphidius spp. (진디벌 우화율 향상을 위한 제안)

  • Eun Hye, Ham;Hye Jeong, Jun;Tai Hyeon, Ahn;Hye Young, Jin
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.657-658
    • /
    • 2022
  • This study was conducted to identify methods to improve the emergence rate of Aphidius spp. in agricultural fields. The emergence rates of Aphidius colemani released into agricultural fields were 37.2%, 54.4% under 'sun blind' conditions, and 63.1% in the group in which shade and moisture were provided. Provision of shade and moisture upon introduction of Aphidius spp., can increase adult emergence 1.69 times more relative to a control group.

The Roles of Wind Shadow Aspect Ratio upon the Behaviors of Transverse Dunes : A Dynamics Analysis on the Behavior Space (바람그늘의 기울기가 횡사구의 지형발달에서 담당하는 역할 -거동 공간상의 동역학적 분석을 중심으로-)

  • RHEW, Hosahng
    • Journal of the Korean association of regional geographers
    • /
    • v.22 no.4
    • /
    • pp.887-911
    • /
    • 2016
  • The empirical law that transverse dunes migrate inversely with their heights leads logically to the prediction that multiple dune ridges will converse to a single huge dune by merging. This contradicts the existence of the steady state dune fields on the Earth. The recent studies have emphasized dune collisions as a key mechanism to the stability of dunefield. The roles of wind shadow aspect ratio, however, have yet to be fully explored. This research aims to investigate the potential roles of wind shadow aspect ratio in the dynamical behaviors of transverse dune field. The simplified model is established for this, based upon allometric properties of transverse dunes, wind speedup on the stoss slope and sand trapping efficiency. The derived governing equations can be transformed to the zoning criteria and vector field for dune evolution. The dynamics analysis indicates that wind shadow aspect ratios do not produce convergent areas on the behavior space; rather, they just act as one of the factors that affect the trajectories of dune evolution. Though the model cannot represent the stability of dune field, but seem to produce a reasonable exponent for dune spacing-height relations.

  • PDF

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.