• Title/Summary/Keyword: 균열 진전 속도

Search Result 113, Processing Time 0.029 seconds

Time-Frequency Analysis of AE Signals at Fatigue Crack Propagation of Aged Super Duplex Stainless Steels (시효된 수퍼 2상 스테인리스강의 피로균열 진전시 발생하는 음향방출신호의 시간-주파수 분석)

  • 남기우;이상기;도재윤;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.20-25
    • /
    • 2000
  • lh deleterious Cr, Mo rich -$\sigma$phase is a hard embrittling precipitate, which forms between MU)-900 $^{\circ}C$, often associated with a reduction in both impact properties and corrosion reshame. On this study, After aging at MU) "C, fatigue crack propagation induced by a phase precipitation was evaluated and time-frequency analysis of acoustic emission was conducted It was possible to find fracture mechanism by a phase precipitation due to time-frequency anulysis of acoustic emission signals.nals.

  • PDF

A Study on the Fatigue Crack Growth Characteristics for the Weldment of Carbon steel-Stainless steel (탄소강-스테인리스강 용접부의 피로균열진전 특성에 관한 연구)

  • 권재도;김우현;김길수;박중철;배용탁;김중형
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.47-54
    • /
    • 1998
  • Various equipments in plants are welded with two different materials and it is required to investigate the effects of fatigue crack propagation on the neighborhood of a welded portion. The characteristics of fatigue crack growth in the base metal of carbon and stainless steel, in the carbon and stainless steel sides located in the neighborhood of welded portion (carbon/stainless steel), respectively and welded portion, are investigated. The results show that the crack growth in the welded portion (carbon/stainless steel) is an average value of the crack growths in the carbon and stainless steel respectively located in the neighborhood of the welded portion. It is found that the crack growth in the welded portion is not significantly different from those in the carbon and stainless steel sides. Hence it can be concluded that the structure welded with two different materials wold not impede the integrity based on the fatigue crack growth.

  • PDF

A Study on the Effect of Shot Velocity by Shot Peening on fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로크랙진전특성에 미치는 쇼트피닝 투사속도의 영향)

  • 박경동;노영석
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require such expensive tools, as well as a great deal of time and effort. Therefore, the improvement of fatigue life through, the adoption of residual stress, is the main focus. The compressive residual stress was imposed on the surface according to each shot velocity(1800, 2200, 2600, 3000rpm) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methose mentioned above, we arrived at the following conclusions; 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. In stage I, $\Delta$K$_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts, unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. Compressive residual stress of the surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Mixed-Mode Fatigue Characteristics of Composite/Metal Interfaces (복합재료/금속 계면의 혼합모드 피로 특성)

  • Baek, Sang-Ho;Kim, Won-Seock;Jang, Chang-Jae;Lee, Jung-Ju
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2010
  • In most engineering structures, fracture often takes place due to fatigue. Therefore, many studies about the effect of the various mode-mixities on fatigue characteristics have been performed. However, most of the former studies only address metal/metal interfaces or delamination of composite. In this study, the fatigue characteristics of composite/metal interfaces are investigated. The fatigue tests were performed using single leg bending(SLB)specimens that comprise composite and steel bonded to each other using co-cure bonding method. This paper focuses on fatigue characteristics depending on different mode ratios$(G_{II}/G_T$. The overall results obtained in this study show that the crack propagation rate increases with the mode II loading component.

The Effect of Temperature on Fatigue Fracture of Pressure Vessel Steel for Vehicle (차량용 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • 박경동;김영대;김형자
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.219-226
    • /
    • 2003
  • The fatigue crack growth behavior of the SA516/60 steel used for pressure vessels was examined experimentally at room temperatures $25^{\circ}C$,$-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. fatigue crack propagation rate da/dN related with stress intensity factor range $\Delta$K was influenced by stress ratio in stable than fatigue crack growth (Region II) with an increase in $\Delta$K. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are explained mainly by the crack closure and the strengthening due to the plasticity near the crack tip and roughness of the crack faces induced.

The Effect of Temperature on Fatigue Fracture in Pressure Vessel Steel at Low Temperature (저온 압력용기용 강의 피로파괴에 미치는 온도의 영향)

  • Park, Keyung-Dong;Ha, Keyung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.359-365
    • /
    • 2002
  • The fatigue crack growth behavior of the SA516/60 steel which is used for pressure vessels was examined experimentally at room temperature $25^{\circ}C,\;-30^{\circ}C,\;-60^{\circ}C,\;-80^{\circ}C,\;-100^{\circ}C$ and $-120^{\circ}C$ with stress ratio of R=0.05, 0.1 and 0.3. Fatigue crack propagation rate da/dN related with stress intensity factor range ${\Delta}K$ was influenced by stress ratio in stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. The resistance of fatigue crack growth at low temperature is higher compared with that at room temperature, which is attributed to tile extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperatures are mainly explained by the crack closure and the strengthening due to the plasticity induced and roughness induced.

  • PDF

A Study of Development Methods of Fatigue Life Improvement for the Suspension Material (현가장치재의 피로수명향상 공법개발에 관한 연구)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates (강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성)

  • Lee Yong-Bok;Oh Byung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

Dynamic Photoelastic Experimental Method for Propagating Interfacial Crack of Bimaterials (이종재료의 진전 계면 균열에 대한 동적 광탄성 실험법)

  • Shin, Dong-Chul;Hawong, Jai-Sug
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.292-297
    • /
    • 2000
  • In this research, the dynamic photoelastic experimental hybrid method for bimaterial is introduced. Dynamic biaxial loading device is developed, its strain rate is 31.637 s-1 and its maximum impact load is 20 ton. Manufactured methods for model of the dynamic photoelastic experiment for bimaterial are suggested. They are bonding method(bonding material: AW106, PC-1) and molding method. In the bonding method, residual stress is not occurred in the manufactured bimaterial. Crack is propagated along the interface or sometimes deviated from the interface. While in the molding method, residual stress is occurred in the manufactured bimaterial. Crack is always deviated from the interface and propagated in the epoxy region(softer materila). In order to propagate with constant velocity along the interface of bimaterial with arbitrary stiffer material, edge crack should be located along the interface of the acute angle side of the softer material in the bimaterial.

  • PDF