• Title/Summary/Keyword: 균열 깊이 평가

Search Result 109, Processing Time 0.029 seconds

Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground (모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1541-1549
    • /
    • 2013
  • This study investigates the response of structures to tunnelling-induced ground movements in sand ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), ground condition (loose sand and dense sand). Four-story block-bearing structures have been used because the structueres can easily be characterized of the extent of dmages with crack size and distribution. Numerical parametric studies have been used to investigae of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and ground condition and provided as a relationship chart. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in sand ground.

Effects on Machining on Surface Residual Stress of SA 508 and Austenitic Stainless Steel (SA508 탄소강 및 오스테나이트 스테인리스강의 표면잔류응력에 미치는 기계가공효과)

  • Lee, Kyoung-Soo;Lee, Seong-Ho;Park, Chi-Yong;Yang, Jun-Seok;Lee, Jeong-Geun;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.543-547
    • /
    • 2011
  • Primary water stress corrosion cracking has occurred in dissimilar weld areas in nuclear power plants. Residual stress is a driving force in the crack. Residual stress may be generated by weld or surface machining. Residual stress due to surface machining depends on the machining method, e.g., milling, grinding, or EDM. The stress is usually distributed on or near the surface of the material. We present the measured residual stress for machining on SA 508 and austenitic stainless steels such as TP304 and F316. The residual stress can be tensile or compressive depending on the machining method. The depth and the magnitude of the residual stress depend on the material and the machining method.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

A Study on the Pull-out Strength of Bond Type Anchors (부착식 앵커의 인발강도에 관한 연구)

  • Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The use of post installed anchors with bond type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post-installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with bond type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on pull-out strength of resin anchors embedded into plain concrete by pull-out experiment of resin anchors with variables such as anchor diameter, anchor interval, embedment depth and edge distance.

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

A Study on the Anti-Spalling Performance of High-Strength Concrete Members by covered Engineered Cementitious Composite (ECC로 피복된 고강도콘크리트 부재의 폭렬억제성능에 관한 연구)

  • Lee, Jae-Young;Kim, Jae-Hwan;Han, Byung-Chan;Park, Sun-Gyu;Kwon, Young-Jin
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • The purpose of this study is to obtain the fundamental fire resistance performance of engineered cementitious composites (ECC) under fire temperature in order to use the fire protection material in high-strength concrete structures. The present study conducted the experiment to simulate fire temperature by employing of ECC and investigated experimentally the explosion and cracks in heated surface of these ECC. In the experimental studies, 5 HSC specimens are being exposed to fire, in order to exami ne the influence of vari ous parameters (such as depth of layer=20, 30, 40 mm; construction method=lining and repairing type) on the fire performance of HSC structures. Employed temperature curve were ISO 834 criterion (3 hr), which are severe in various criterion of fire temperature in building structures. The numerical regressive analysis and proposed equation to calculate ambient temperature distribution is carried out and verified against the experimental data. By the use of proposed equation, the HSC members subjected to fire loads were designed and discussed.

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Analysis of Steel Reinforcement Ratio for Bent Pile Structures Considering Column-Pile Interaction (기둥-말뚝의 상호작용을 고려한 단일 현장타설말뚝의 철근비 분석)

  • Kim, Jae-Young;Jeong, Sang-Seom;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.181-188
    • /
    • 2014
  • In this study, an interactive analysis considering column-pile interaction is performed on the basis of an equivalent base spring model for supplementing virtual fixed point design of bent pile structures. Through this analytical method, the application of the minimum steel reinforcement ratio of the pile (0.4%) is analyzed by taking into account the major influencing parameters. Furthermore, the limit depth for steel reinforcement ratio is proposed through the relationships between column and pile conditions. To obtain the detailed information, it is found that an interactive analysis is intermediate in theoretical accuracy between the virtual fixed point model analysis and full-modeling analysis. Base on this study, it is also found that the maximum bending moment is located within cracking moment of the pile when material nonlinearity is considered. Therefore, the minimum steel reinforcement ratio is appropriately applicable for the optimal design of bent pile structures. Finally, the limit depth for steel reinforcement ratio ($L_{As=x%}$) is proposed by considering the field measured results. It is shown that the normalized limit depth ratio for steel reinforcement ratio ($L_{As=x%}/L_P$) decreases linearly as the length-diameter ratio of pile ($L_P/D_P$) increases, and then converges at a constant value.

Performance assessment of Magnesium Bipolar Plates for Light Weight PEM Fuel Cell (PEM 연료전지 경량화를 위한 마그네슘 분리판의 성능평가)

  • Park, To-Soon;Lee, Dong-Woo;Kim, Kyung-Hwan;Kwon, Se-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1063-1069
    • /
    • 2012
  • In present paper, we used magnesium alloy having a lower density and higher electrical conductivity for bipolar plate to reduce the weight of PEM fuel cell. The silver was coated to prevent corrosion and form passivation film on the metal surface with sputtering. In acid proof evaluation for setting optimal coating conditions, the homogeneity of coating thickness was improved by coating with the thickness of 3 ${\mu}m$ which not indicated any micro cracks and the temperature $180^{\circ}C$. The performance test and evaluation based on the clamping pressure and channel depth to determine the configuration of bipolar plate for assembling single cell was implemented. And then we assembled single cell with this bipolar plate and implemented the performance test to ensure and compare the current-voltage performance followed as several factors such as coating or non-coating, the change of clamping pressure, the change of channel depth, etc. As these results, the maximum power density of single cell with the coated bipolar plate was 192 $mW/cm^2$ and it was confirmed that the power density per unit mass was better than existing metal bipolar plate.

Evaluation of Harmless Crack Size according to Residual Stress Depth of Induction Hardened SCM440 Steel (유도경화한 SCM440 강의 잔류응력 깊이에 따르는 무해화 균열 크기 평가 )

  • Jong-Kyu Park;Ki-Hang Shin;Byoung-Chul Choi;In-Duck Park;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.571-576
    • /
    • 2023
  • In this study, the harmless crack size(ahml) according to the residual stress depth was evaluated using the fatigue limit of SCM440 steel by quenching-tempering(QT) and induction hardening(IH), and threshold stress intensity factor of QT steel. Because the residual stress increased rapidly as the crack depth increased, ahml was determined at the depth of all the crack aspect ratio(As) regardless of Type I-III, and ahml also increased according to the residual stress depth. ahml was minimal at As=1.0 and maximal at As=0.1, but was almost similar on each Type. ahml was small the dependence on As.