• Title/Summary/Keyword: 균열 깊이 평가

Search Result 109, Processing Time 0.03 seconds

Spectral Energy Transmission Method for Crack Depth Estimation in Concrete Structures (콘크리트 구조물의 균열 깊이 추정을 위한 스펙트럼 에너지 기법)

  • Shin, Sung-Woo;Min, Ji-Young;Yun, Chung-Bang;Popovics, John S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.164-172
    • /
    • 2007
  • Surface cracks in concrete are common defects that can cause significant deterioration and failure of concrete structures. Therefore, the early detection, assessment, and repair of the cracks in concrete are very important for the structural health. Among studies for crack depth assessment, self-calibrating surface wave transmission method seems to be a promising nondestructive technique, though it is still difficult in determination of the crack depth due to the variation of the experimentally obtained transmission functions. In this paper, the spectral energy transmission method is proposed for the crack depth estimation in concrete structures. To verify this method, an experimental study was carried out on a concrete slab with various surface-opening crack depths. Finally, effectiveness of the proposed method is validated by comparing the conventional time-of-flight and cutting frequency based methods. The results show an excellent potential as a practical and reliable in-situ nondestructive method for the crack depth estimation in concrete structures.

Depth-Sizing Technique for Crack Indications in Steam Generator Tubing (증기발생기 전열관 균열깊이 평가기술)

  • Cho, Chan-Hee;Lee, Hee-Jong;Kim, Hong-Deok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The nuclear power plants have been safely operated by plugging the steam generator tubes which have the crack indications. Tube rupture events can occur if analysts fail to detect crack indications during in-service inspection. There are various types of crack indication in steam generator tubes and they have been detected by the eddy current test. The integrity assessment should be performed using the crack-sizing results from eddy current data when the crack indication is detected. However, it is not easy to evaluate the crack-depth precisely and consistently due to the complexity of the methods. The current crack-sizing methods were reviewed in this paper and the suitable ones were selected through the laboratory tests. The retired steam generators of Kori Unit 1 were used for this study. The round robin tests by the domestic qualified analysts were carried out and the statistical models were introduced to establish the appropriate depth-sizing techniques. It is expected that the proposed techniques in this study can be utilized in the Steam Generator Management Program.

Depth Sizing of Notch Fatigue Crack Using Diffracted Ultrasonic Wave (회절초음파를 이용한 노치 피로균열의 균열깊이 평가)

  • Jin, Mei-Ling;Lee, Tae-Hun;Park, Byung-Jun;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.405-414
    • /
    • 2009
  • This paper proposed a methodology based on ultrasonic diffraction technique to inspect the depth of a crack initiated from a notch of CT specimen by fatigue test, and its usefulness was verified by experiments. Especially, in order to identify accurately the diffractive waves from the crack tip in the situation where there are extra diffractive elements such as a notch, we have tried imaging by transducer scan and analyzed the propagation path of diffracted wave. Two specimens with and without a crack were experimented. Higher frequency and larger refractive angle of transducer showed a tendency to decrease the error in the measurements, and the measured crack depth showed an error less than 0.38 mm in case of 4 MHz $60^{\circ}-60^{\circ}$. The proposed methodology is applicable to weak diffractive sources, and so that it would be useful to inspect micro cracks and for their depth sizing.

Dimensionality Reduced Wave Transmission Function and Neural Networks for Crack Depth Estimation in Concrete Structures (차원 축소된 표면파 투과 함수와 인공신경망을 이용한 콘크리트 구조물의 균열 깊이 평가 기법)

  • Shin, Sung-Woo;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • Determination of crack depth in filed using the self-calibrating surface wane transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A Principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural networks (NNs) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

Evaluation of Crack-Repairing Performance in Concrete Using Surface Waves (표면탄성파를 활용한 콘크리트 균열 보수 성능 평가 기법)

  • Ahn, Eunjong;Kim, Hyunjun;Gwon, Seongwoo;Sim, Sung-Han;Lee, Kwang Myong;Shin, Myoungsu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.496-502
    • /
    • 2017
  • The purpose of this study is to investigate the applicability of surface-wave techniques for the evaluation of the crack-repairing performance of an epoxy injection method in concrete. In this study, box-shaped concrete specimens with four different crack depths were made with identical mix proportions. The specimens with different crack depths were completely repaired using the same epoxy injection method. The spectral energy transmission ratio of surface waves is used as an index to differentiate the effects of crack depth and crack-repairing performance. The decrease of spectral energy transmission ratio in accordance with the increase of crack depth was identified before repairing. Furthermore, the spectral energy transmission ratio increased after the crack-repairing process in all specimens. The spectral energy transmission ratio is considered as a great indicator for estimating the crack-repairing performance of the epoxy injection method; the ratio was recovered up to almost 95% of the uncracked condition.

A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City (국내 도심지 콘크리트 교각 취약부의 탄산화 조사에 대한 연구)

  • Kwon, Seung Jun;Park, Sang Sun;Nam, Sang Hyuk;Cho, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.116-122
    • /
    • 2007
  • The concrete structures in Metropolitan city are usually exposed to carbonation and corrosion of embedded steel occurs due to the carbonation. In inspection and diagnosis of concrete structures, carbonation depth in sound concrete is mainly evaluated and service life for concrete structure is predicted based on the result. Generally, however, mass concrete structures such as columns have construction joint for suitable placing and also have cracks in early-age. In this study, carbonation depth in RC columns used for 20 years in metropolitan city is evaluated and also analyzed by considering the local conditions like sound, cracked, and joint area. The carbonation depth in cracked and joint area is more rapid than that in sound area, and it is thought to be more desirable to consider this effect in concrete structures with small cover depth. Furthermore, the technique for carbonation prediction in cracked concrete is derived in terms of crack width and the results from this technique are verified by comparing those from previous research.

Evaluating the Depth of a Surface-opening Crack in Concrete Slabs using Surface wave Measurements (표면파 측정을 통한 콘크리트 슬래브의 표면균열 깊이 측정)

  • Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.104-112
    • /
    • 2015
  • Non-contact surface wave transmission (SWT) measurements are used to evaluate the depth of a surface-breaking crack in concrete slabs. The author propose a measurement model that includes an appropriate configuration of the source and receivers, and a transmission function for the given configuration. A series of numerical simulations using a 3D finite element model is used to obtain the transmission function. Then, validity of a proposed model is verified through experimental studies. Two air-coupled sensors are used to measured surface waves across surface-breaking cracks with varying depths from 0mm to 100mm with intervals of 10mm in a concrete slab ($1500{\times}1500{\times}180mm^3$) in laboratory. As a result, the proposed method is demonstrated as to be effective for charactering the depth of a surface-breaking crack in concrete bridge deck with an average error of 10%. A discussion on practical applications of the proposed method is also included in this article.

Application and Improvement of Surface Wave Transmission Technique for Measuring the Crack Depth in Reinforced Concrete Members (철근 콘크리트 부재의 균열 깊이 측정을 위한 표면파 투과기법의 적용 및 개선)

  • Min, Ji-Young;Kim, Jae-Hong;Kwak, Hyo-Gyoung;Yun, Chung-Bang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.164-176
    • /
    • 2008
  • In order to assess the existing infrastructures, it is required to measure the crack depth of concrete members. This paper considers the surface wave transmission technique to measure the crack depth. In special, we demonstrate the effect of reinforced bar on surface wave propagation and conclude that the surface wave transmission technique has only the minor error by the reinforced bar. In addition, we propose and validate the optimal window size for eliminating various reflection waves from the boundary of members.

Evaluation of Canister Weld Flaw Depth for Concrete Storage Cask (콘크리트 저장용기의 캐니스터 용접부 결함깊이 평가)

  • Moon, Tae-Chul;Cho, Chun-Hyung;Jung, Sung-Hun;Lee, Young-Oh;Jung, In-su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radio-active materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B&PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.