• Title/Summary/Keyword: 균열 깊이

Search Result 247, Processing Time 0.027 seconds

Determination of the Vertical Crack Depth in Concrete by the Ultrasonic Time of Flight (초음파 도달시간에 의한 콘크리트에서의 수직 균열의 깊이 측정에 관한 연구)

  • 김영환;이세경;김호철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.35-38
    • /
    • 1990
  • Depths of the vertical cracks in the concrete were determined by the time of flight of the ultrasonic waves. The ultrasonic waves are diffracted at the crack tip, and the arrival time of ultrasonic waves are dependent on the crack depth and speration distance between transmitting and receiving ultrasonic transducers. The vertical cracks with 0.2-2mm width and 10-100mm depth were examined by multi-layered ultrasonic transducers. It was found that the time of flight of ultrasonic waves were proportional to the depth of vertical cracks. The depth of vertical cracks in the range of 20-100mm depth could be determined by the transient time of the diffracted ultrasonic waves

  • PDF

Detecting Pothole using by Wavelet and Superpixel (웨이블릿과 슈퍼픽셀을 이용한 포트홀 탐지)

  • Lee, SungWon;An, KwangEun;Jo, Young-Tae;Seo, Dongmahn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.976-978
    • /
    • 2017
  • 포장 도로의 균열 또는 유실에 따라 발생하는 포트홀은 환경 변화에 따라 지속적으로 발생하며 이로 인한 교통사고도 지속적으로 발생한다. 포트홀 탐지를 위해 크게 3가지 방법들이 시도되고 있다. 그 중 이미지 처리를 이용한다. 포트홀은 내부에 깊이가 있으며 거친 질감을 가진다. 이러한 특성을 이용하여 포트홀을 탐지한다.

A Study on the Crack Depth Sizing Using ECT Technique for Martensitic Stainless Steel (ECT를 이용한 마르텐사이트 재질의 균열결함 깊이측정 연구)

  • Kim, Wang-Bae;Cheon, Keun-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The flaws detected by the non-destructive surface test methods shall be sized by means of the volumetric test such as an UT(ultrasonic test) or an ECT(eddy current test) for the purpose of analyzing and repairing them. It is generally known that the ECT is a comparatively effective technique for the small size cracks which are located shallowly from the surface. On this study, the ECT technique was tried to size the depth of the crack-like EDM notches, and it is identified that the ECT is an appropriate depth sizing technique for the shallow cracks less than 3mm in the Martensitic CA6NM material.

  • PDF

Analytical study of the influence of crack width and depth on the penetration of chloride ion and the carbonation (균열 폭 및 깊이가 염소이온 침투 및 탄산화에 미치는 영향에 대한 해석적 연구)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.594-597
    • /
    • 2006
  • Chloride ion penetration and carbonation are the most important factors in the durability problems of reinforced concrete structures. Most of the existing studies on those subjects are focused on the no-crack concrete, though the existence of crack may strongly affect the chloride ion penetration and carbonation. To evaluate the influence of crack on the chloride ion penetration and carbonation and to assess the service life of reinforced concrete more accurately, finite volume analyses (FVA) were performed based on the FV mesh containing the ideal crack whose width is uniform along the depth. Analytical results show that the influence of crack width and depth is much more pronounced for the chloride ion penetration than for the carbonation.

  • PDF

Analysis of an Error Accompanying Measured Surface Crack Depth of Concrete Using Ultrasonic Pulse Velocity Method (초음파법에 의한 콘크리트 표면 균열 깊이의 측정오차 분석에 관한 연구)

  • 박석균;최욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.175-180
    • /
    • 2003
  • Ultrasonic pulse velocity method is applied many times for measuring surface crack depth of concrete in case of diagnosis of concrete structures. By the way, this method has an error accompanying measured surface crack depth of concrete because there are many uncertainty factors. So, it is necessary to study for an error of this method affected by these uncertainty factors. Two error factors(uncertainty factors) are tested and analyzed in this study. One is for an error according to measuring the propagation time of ultrasonic wave and the arrangement distance of transducers. Another is for an error according to positioning the transducer as a distance to surface crack from the transducer.

  • PDF

Dimensionality Reduced Wave Transmission Function and Neural Networks for Crack Depth Estimation in Concrete (차원 축소된 표면파 투과 함수와 인공신경망을 이용한 콘크리트의 균열 깊이 평가 기법)

  • Shin, Sung-Woo;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.27-32
    • /
    • 2007
  • Determination of crack depth in filed using the self-calibrating surface wave transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural networks (NNs) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

  • PDF

Measurement of Crack Depth Located under Steel Reinforcement in Reinforced Concrete Specimens using Ultrasonic Method (초음파를 이용한 콘크리트 시편의 피복두께 이하에 위치한 균열깊이 탐사)

  • Rhim, Hong-Chul;Kim, Yeon-Su;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.181-188
    • /
    • 2002
  • The objective of this study is to determine crack depth located under steel reinforcement in concrete specimens using ultrasonic method. Experimental studies were performed on concrete specimens containing vertical and inclined surface-opening cracks with known depths. The other studies were carried out on specimens with flexural crack. Experimental results have shown that the crack depth is effectually measured when the distance between the probes is less than the crack depth. The effect of steel on crack depth estimation is studied through a model by considering P-waves diffaction at the tip of crack and steel. In addition, experimental results show that the ultrasonic method is one of useful methods to evaluate the crack depth in reinforced concrete.

Groundwater Flow Analysis in Fractured Rocks Using Zonal Pumping Tests and Water Quality Logs (구간양수시험과 수질검층자료에 의한 균열암반내 지하수 유동 분석)

  • Hamm, Se-Yeong;Sung, Ig-Hwan;Lee, Byeong-Dae;Jang, Seong;Cheong, Jae-Yeol;Lee, Jeong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.411-427
    • /
    • 2006
  • This study aimed to recognize characteristics of groundwater flow in fractured bedrocks based on zonal pump-ing tests, slug tests, water quality logs and borehole TV camera logs conducted on two boreholes (NJ-11 and SJ-8) in the city of Naju. Especially, the zonal pumping tests using sin91e Packer were executed to reveal groundwater flow characteristics in the fractured bedrocks with depth. On borehole NJ-11, the zonal pumping tests resulted in a flow dimension of 1.6 with a packer depth of 56.9 meters. It also resulted in lower flow dimensions as moving to shallower packer depths, reaching a flow dimension of 1 at a 24 meter packer depth. This fact indicates that uniform permissive fractures take place in deeper zones at the borehole. On borehole SJ-8, a flow dimension of 1.7 was determined at the deepest packer level (50 m). Next, a dimension of 1.8 was obtained at 32 meters of packer depth, and lastly a dimension of 1.4 at 19 meters of packer depth. The variation of flow dimension with different packer depths is interpreted by the variability of permissive fractures with depth. Zonal pumping tests led to the utilization of the Moench (1984) dual-porosity model because hydraulic characteristics in the test holes were most suitable to the fractured bedrocks. Water quality logs displayed a tendency to increase geothermal temperature, to increase pH and to decrease dissolved oxygen. In addition, there was an increasing tendency towards electrical conductance and a decreasing tendency towards dissolved oxygen at most fracture zones.

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

A Study on the Field Application of Epoxy Impregnation Method Using Elastic Storage Tube (탄성저장관을 활용한 에폭시 주입공법의 현장 적용성에 관한 연구)

  • Kim, Chun-Ho;Lee, Ho-Jin;Kim, Kyoung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.72-80
    • /
    • 2018
  • In this research, we tried to investigate the influence of concrete on cracks after applying to the actual construction site using the TPS construction method which can be easily charged by the mechanical injection method. To summarize the results, the following It is as follows. First, in the case of ultrasonic velocity, it can be seen that the ultrasonic wave passes rapidly at an average of about 36 mm / sec as compared with the syringe method when using the TPS method, and in the case of the injection depth, the syringe method In the case of TPS construction method, it showed an excellent tendency that 100% of the water retentive material was charged with all the formulations under a strong injection pressure. In the case of compressive strength, it was shown that the average was increased by 16.8% at the time of using the TPS construction method, and it was found to be structurally superior. Taken together, it is possible to confirm the behavior of the crack repairing agent by improving the quality by improving the strength and confirming the window installation by filling the injection material into the closed space at the crack site when using the TPS method compared with the syringe method. In addition, it is expected that construction time will be improved by shortening the construction period of about 5 days for the TPS construction method construction section 532 m, and usability will be expanded by the crack repair method of concrete structure.