• Title/Summary/Keyword: 균열하자

Search Result 7,091, Processing Time 0.034 seconds

Permeability Evaluation in Cold Joint Concrete with Mineral Admixture under Compressive and Tensile Loading (혼화재료를 고려한 압축 및 인장상태에서 콜드조인트 콘크리트의 투수성 평가)

  • Choi, Se-Jin;Kim, Seong-Jun;Mun, Jin-Man;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.576-587
    • /
    • 2015
  • This paper presents a quantitative evaluation of water permeability in concrete with cold joint considering mineral admixture and loading conditions. Concrete samples with OPC (Ordinary Portland Cement) and GGBFS(Ground Granulated Blast Furnace Slag) are prepared considering 0.6 of W/C ratio and 40% of replacement. 30% and 60% loading levels for compression and 60% loading level for tension are induced to concrete samples. In compression conditions, the permeability in control case shows $2.41{\times}10^{-11}m/s$ in OPC concrete, and it changes to $2.07{\times}10^{-11}m/s$ (30% of peak) and $2.36{\times}10^{-11}m/s$ (60% of peak). The results in GGBFS concrete shows the same trend, which yields $2.17{\times}10^{-11}m/s$ (control), $1.65{\times}10^{-11}m/s$ (30% of peak), and $1.96{\times}10^{-11}m/s$ (60% of peak), respectively. In tensile conditions, the permeability increases from $2.37{\times}10^{-11}m/s$ (control) to $2.67{\times}10^{-11}m/s$ (60% of peak) while that in GGBFS concrete increases from $2.17{\times}10^{-11}m/s$ (control) to $2.24{\times}10^{-11}m/s$ (60% of peak). Permeability coefficients decreases in 30% of compressive level but increases in 60% level, while results in tensile level increases rapidly. This shows pore structure in concrete is condensed and with loading and permeability increases due to micro-cracking. Permeability evaluation considering the effects of loading conditions, cold joint, and GGBFS is verified to be important since water permeability greatly changes due to their effects.

Analysis of transmissivity tensor in an anisotropic aquifer (이방성 대수층에서의 투수량계수텐서 해석)

  • 강철희;이대하;김구영;이철우;김용제;우남칠
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.53-61
    • /
    • 2002
  • An Aquifer test was carried out on five boreholes to determine the hydrologic anisotropy and the major groundwater flow direction in the aquifer system of the study area. With an assumption of the aquifer's anisotropy and homogeneity, the major transmissivity(T(equation omitted)), the minor transmissivity( $T_{ηη}$ ), and primary tensor direction ($\theta$) for each borehole were determined from the test. Besides the boreholes BH-1, BH-4 and BH-5, the anisotropy transmissivity tensor values of BH-2 and BH-3 did not correspond with the assumption. Thereafter the values were plotted on the polar coordinate, and showed that the tensor values were out of the anisotropy ellipsoid due to the high heterogeneity of BH-2 and BH-3 comparing with the other boreholes. Therefore. the anisotropy of the aquifer was examined from BH-1, BH-4. and BH-5. In BH-1, T(equation omitted) is 171.9 $\m^2$/day. $T_{ηη}$ is $71.01\m^2$/day, and the principal tensor direction is Nl5.39$^{\circ}$E. In BH-4. T(equation omitted) is $268.2 \m^2$/day, $T_{ηη}$ / is $28.75\m^2$/day and the principal tensor direction is N7.55$^{\circ}$E. In BH-5, T(equation omitted) is $168.4\m^2$/day, $T_{ηη}$ is 66.80 $\m^2$/day, and the principal tensor direction is $N76.59^{\circ}$E. On the basis of teleview logging performed on each borehole. the principal fracture directions were revealed as $N0^{\circ}$~4$^{\circ}$E/$30^{\circ}$~$50^{\circ}$SE and $N30^{\circ}$~$80^{\circ}$W/$20^{\circ}$~$50^{\circ}$NE that are the most frequently occurred sets as well as that correspond well with the calculated transmissivity tensor.

A Modified Technique for Pectus Carinatum Surgery: Partial Costal Cartilage Resection and Pre-sternal Compression with Using a Stainless Steel Bar (새가슴 수술의 변형수기: 부분 늑연골 절제와 스테인리스 금속막대를 이용한 흉골압박)

  • Lee, Seock-Yeol;Oh, Jae-Yun;Lee, Seung-Jin;Lee, Chol-Sae
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.742-746
    • /
    • 2008
  • Background: The surgical treatment of pectus carinatum is usually a modified Ravitch operation that consists of complete costal cartilage resection and sternal wedge osteotomy. We tried a simple and easy technique that is resection of only deformed, protruded costal cartilage and pre-sternal compression with using a stainless steel bar and this is done without sternal osteotomy. Therefore, we performed partial cartilage resection and pre-sternal compression with a stainless steel bar and we observed the effects and the efficiency of treatment. Material and Method: From July, 2006 to June, 2008, 10 patients with pectus carinatum underwent our modified technique of pectus carinatum surgery. The effects of surgery and the complications were reviewed. Result: 5 patients with only pectus carinatum underwent our modified technique of pectus carinatum surgery. 5 patients with pectus carinatum and pectus excavatum underwent our modified technique of pectus carinatum surgery and Nuss surgery. The mean patient age was 13.4+3.3 years old. The mean operation time was 137.6+22.9 minutes for the pectus carinatum patients and 234.0+36.5 minutes for the pectus carinatum and pectus excavatum patients. The mean length of hospitalization was 11.8+1.0 days. The Haller pectus index of pectus carinatum was $2.10{\pm}0.21$ preoperatively and this was increased to $2.53{\pm}0.07$ postoperatively. The only complication was simple partial wound disruption in 1 patient. Conclusion: We performed partial cartilage resection and pre-sternal compression with a stainless steel bar in 10 patients with pectus carinatum and its effects were good. Our modified technique of pectus carinatum is easy and simple as compared with the Ravitch operation. But removal of the stainless steel bar has not yet been performed for these patients and long-term follow up is needed to accurately evaluate the. effects of this surgery in many surgical cases.

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea -I. Rock-forming Minerals and Mineralogical Characteristics of the Parent Rocks (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토(土壤粘土) 광물(鑛物)의 특성(特性)과 생성학적(生成學的) -I. 조암광물(造岩鑛物)과 광물학적(鑛物學的) 특성(特性))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Young-Ho;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 1991
  • A study was carried out to investigate the composition of rock-forming minerals and mineralogical characteristics of the five major parent rocks in Korea. The identification was done through the analyses of chemical. X-ray diffraction, thermal(DTA, TG), infrared spectroscopic, and microscopic methods. Among these methods, X-ray diffraction was considered to be the most rapid and effective way to identify minerals in the parent rocks. The main rock-forming minerals of the parent rocks were feldspars, quartz, and micas in granite and granite-gneiss, calcite and dolomite in limestone, quartz and calcite in shale, plagioclase and augite in basalt. A small amount of sesquioxides was identified as a accessory mineral by means of DTA from the parent rocks of Weoljeong series(granite) and Cheongsan series(granite-gneiss). The abrasion pH affecting the soil formation ranged from 7.5 to 8.4 in the parent rocks containing ferromagnesian minerals and carbonates. In the granite and granite-gneiss of which the main rock-forming minerals were feldspars and quartz with low content of biotite, the abrasion pH ranged from 6.2 to 6.4. In chemical composition of the parent rocks, Si, AI, and K oxides tented to increase with higher contents of quartz, feldspars, and muscovite, while Fe and Mg oxides with higher content of biotite, chlorite, amphiboles, and augite. Higher ignition loss in limestone and shale resulted in the release of $CO_2$ from calcite and/or dolomite.

  • PDF

Applied Petrologic Study of the Daebo Biotite Granites in the mid Gyeonggi Massif (경기육괴 중부에 분포하는 대보 흑운모화강암류의 응용암석학적 연구)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Park, Deok-Won;Lee, Jin-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.263-275
    • /
    • 2012
  • Jurassic Daebo biotite granites, known as one of the main stone resources in the country, are widely and away distributed in the Pocheon and Yangju areas of the mid Gyeonggi massif. The objects of the study are mainly to reveal the unique characteristics of grain size, rock color, mineral composition, physical property and fracture system from the above biotite granites. Biotite granites from the Pocheon area (PG) and Yangju area (YG) are represented by coarse-grained and light gray, and medium to coarse-grained and grayish to light gray, respectively. In modes, main minerals of Qz+Af+Pl (quartz+alkali feldspar+plagioclase) are more increased in the PG, and accessories of biotite are more increased in the YG, which differences can cause the PG more bright light gray than the YG. Specific gravity (SG) shows somewhat more increasing in the YG than the PG. These differences can be caused by more increasing in biotite contents of higher specific gravity compared to the major minerals in the former than the latter. Absorption ratio (AR) and porosity (PR) of the PG and YG show the same values of 0.33 % and 0.86 %, respectively. In the correlations, PR vs SG and AR vs PR show gradually negative and distinctly positive trends, respectively. Compressive strength (CS) and tensile strength (TS) show increasing in the PG (CS: 1,775 $kg/cm^2$, TS: 87 $kg/cm^2$) than the YG (CS: 1,647 $kg/cm^2$, TS: 79 $kg/cm^2$). These strength characteristics could be attributed to the inherent rock textures of them. Abrasive hardness (AH) also shows a little increasing in PG, which can be caused by increase in quartz contents having higher hardness than the other major minerals. Orientations of fracture sets from the PG and YG were compared with those of vertical rift and grain planes in Mesozoic granites of the country. From the overlapped diagram, the distribution pattern between fracture sets and above vertical planes suggests that microcrack systems developed in Mesozoic granites in Korea occur also in the Daebo biotite granite bodies of the mid Gyeonggi massif. From the relation diagram showing the characteristics of fracture patterns for the above two area, PG and YG may have more potentiality for dimension and non-dimension stone resources, respectively.

Fracture Pattern and Physical Property of the Granodiorite for Stone Resources in the Nangsan Area (낭산일대에 분포하는 화강섬록암 암석자원의 열극체계 및 물리적 특성)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.144-161
    • /
    • 2007
  • The studied Nangsan area is widely covered by the Jurassic biotite granodiorite, which is mainly light grey in color and medium-grained in texture. Results of the regional fracture pattern analysis for the granodiorite body are as follows. Strike directions of fractures show three dominant sets in terms of frequency order. The sets are in an order of a (1) $N80^{\circ}{\sim}90^{\circ}E$ (1st-order)>(2) $N70^{\circ}{\sim}80^{\circ}E$ (2nd-order)>(3) $NS{\sim}N10^{\circ}E$ (3rd-order). Spacings of the fractures are mostly predominant in less than 200 cm. Therefore, the granodiorite of the area has more potential for non-dimensional stones than dimension ones. And orientations of vertical quarrying planes can be also divided into two groups in terms of frequency $N14^{\circ}W{\sim}N16^{\circ}E$ (1st-order) and (2) $N78^{\circ}E{\sim}N88^{\circ}E$ (2nd-order). The orientations of the two groups are more or less different from those of the regional fracture patterns. These can be mainly attributed to the preferred orientations of microcrack developed in the quarries. Of physical properties, specific gravity, absorption ratio, porosity, compressive strength, tensile strength and abrasive hardness are 2.65, 0.28%, 0.73%, $1,628kg/cm^2,\;100kg/cm^2$ and 31, respectively. Contrary to the porosity, both granites of the Nangsan and Sogrisan areas show almost similar values of the abrasive hardness. These can be explained by the differences of Qz+Af modes, which can be regarded as an index for abrasive resistance. Meanwhile, it is anticipated that comprehensive understanding of the orientations of vertical quarrying planes and characteristics of various physical properties will be utilized as an important information for stone resources.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.

Shallow subsurface structure of the Vulcano-Lipari volcanic complex, Italy, constrained by helicopter-borne aeromagnetic surveys (고해상도 항공자력탐사를 이용한 Italia Vulcano-Lipari 화산 복합체의 천부 지하 구조)

  • Okuma, Shigeo;Nakatsuka, Tadashi;Komazawa, Masao;Sugihara, Mitsuhiko;Nakano, Shun;Furukawa, Ryuta;Supper, Robert
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.129-138
    • /
    • 2006
  • Helicopter-borne aeromagnetic surveys at two different times separated by three years were conducted to better understand the shallow subsurface structure of the Vulcano and Lipari volcanic complex, Aeolian Islands, southern Italy, and also to monitor the volcanic activity of the area. As there was no meaningful difference between the two magnetic datasets to imply an apparent change of the volcanic activity, the datasets were merged to produce an aeromagnetic map with wider coverage than was given by a single dataset. Apparent magnetisation intensity mapping was applied to terrain-corrected magnetic anomalies, and showed local magnetisation highs in and around Fossa Cone, suggesting heterogeneity of the cone. Magnetic modelling was conducted for three of those magnetisation highs. Each model implied the presence of concealed volcanic products overlain by pyroclastic rocks from the Fossa crater. The model for the Fossa crater area suggests a buried trachytic lava flow on the southern edge of the present crater. The magnetic model at Forgia Vecchia suggests that phreatic cones can be interpreted as resulting from a concealed eruptive centre, with thick latitic lavas that fill up Fossa Caldera. However, the distribution of lavas seems to be limited to a smaller area than was expected from drilling results. This can be explained partly by alteration of the lavas by intense hydrothermal activity, as seen at geothermal areas close to Porto Levante. The magnetic model at the north-eastern Fossa Cone implies that thick lavas accumulated as another eruption centre in the early stage of the activity of Fossa. Recent geoelectric surveys showed high-resistivity zones in the areas of the last two magnetic models.

Microstructural Study of Mortar Bar on Akali-Silica Reaction by Means of SEM and EPMA Analysis (알칼리-실리카 반응에 의한 모르타르 봉의 SEM과 EPMA 분석을 통한 미세구조 연구)

  • Jun, Ssang-Sun;Lee, Hyo-Min;Jin, Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • In this study alkali reactivity of crushed stone was conducted according to the ASTM C 227 that is traditional mortar bar test, and C 1260 that is accelerated mortar bar test method. The morphology and chemical composition of products formed in mortar bar, 3 years after the mortar bar tests had been performed, were examined using scanning electron microscopy (SEM) with secondary electron imaging (SEI) and electron probe microanalysis (EPMA) with backscattered electron imaging (BSEI). The crushed stone used in this study was not identified as being reactive by ASTM C 227. However, mortar bars exceeded the limit for deleterious expansion in accelerated mortar bar test used KOH solution. The result of SEM (SEI) analysis, after the ASTM C 227 mortar bar test, confirmed that there were no reactive products and evidence of reaction between aggregate particles and cement paste. However, mortar bars exposed to alkali solution (KOH) indicated that crystallized products having rosette morphology were observed in the interior wall of pores. EPMA results of mortar bar by ASTM C 227 indicated that white dots were observed on the surface of particles and these products were identified as Al-ASR gels. It can be considered that the mortar bar by ASTM C 227 started to appear sign of alkali-silica reaction in normal condition. EPMA results of the mortar bar by ASTM C 1260 showed the gel accumulated in the pores and diffused in to the cement matrix through cracks, and gel in the pores were found to be richer in calcium compared to gel in cracks within aggregate particles. In this experimental study, damages to mortar bars due to alkali-silica reaction (ASR) were observed. Due to the increasing needs of crushed stones, it is considered that specifications and guidelines to prevent ASR in new concrete should be developed.

Analysis on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported Reinforced Concrete Beams (철근콘크리트 단순보의 유효 단면2차모멘트에 대한 모멘트 분포 형상의 영향 분석)

  • Park, Mi-Young;Kim, Sang-Sik;Lee, Seung-Bae;Kim, Chang-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • The concept of the effective moment of inertia has been generally used for the deflection estimation of reinforced concrete flexural members. The KCI design code adopted Branson's equation for simple calculation of deflection, in which a representative value of the effective moment of inertia is used for the whole length of a member. However, the code equation for the effective moment of inertia was formulated based on the results of beam tests subjected to uniformly distributed loads, which may not effectively account for those of members under different loading conditions. Therefore, this study aimed to verify the influences of moment shapes resulting from different loading patterns by experiments. Six beams were fabricated and tested in this study, where primary variables were concrete compressive strengths and loading distances from supports, and test results were compared to the code equation and other existing approaches. A method utilizing variational analysis for the deflection estimation has been also proposed, which accounts for the influences of moment shapes to the effective moment of inertia. The test results indicated that the effective moment of inertia was somewhat influenced by the moment shape, and that this influence of moment shape to the effective moment of inertia was not captured by the code equation. Compared to the code equation, the proposed method had smaller variation in the ratios of the test results to the estimated values of beam deflections. Therefore, the proposed method is considered to be a good approach to take into account the influence of moment shape for the estimation of beam deflection, however, the differences between test results and estimated deflections show that more researches are still required to improve its accuracy by modifying the shape function of deflection.