• Title/Summary/Keyword: 균열패턴

Search Result 135, Processing Time 0.025 seconds

Influence of Reinforcement Ratio on the Hysteratic Behavior of Rectangle Column-Slab Connection (장방형 기둥-슬래브 접합부의 이력거동에 대한 철근비의 영향)

  • Cho, In-Jung;Choi, Myung-Shin;Shin, Sung-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.53-56
    • /
    • 2008
  • In this investigation, results of laboratory tests on six reinforce concrete flat plate interior connections with elongated rectangular column support which has been used widely in tall residential buildings are presented. The purpose of this study is to evaluate an effect of column aspect ratio(${\beta}$c=$c_1/c_2$) on the hysteretic behavior under earthquake type loading. The aspect ratio of column section was taken as 0.33${\sim}$3($c_1/c_2$=1/3, 1/1, 3/1). Other design parameters such as flexural reinforcement ratio of slab and concrete strength was kept constant as ${\rho}$=1.0%, 1.5% and $f){ck}$=40MPa, respectively. Gravity shear load($V_g$) was applied by 30 percents of nominal vertical shear strength(0.3$V_o$) of the specimen. Experimental observations on punching failure pattern, peak lateral-load and story drift ratio at punching failure, and stiffness degradation were achieved and discussed in accordance with different column aspect ratio.

  • PDF

Strength of Joint in Floating Structures Constructed with Precast Concrete Modules (프리캐스트 콘크리트 부유식 구조물의 모듈 접합부 강도)

  • Yang, In-Hwan;Kim, Kyung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.197-204
    • /
    • 2012
  • The behavior of floating structures constructed with precast concrete modules is dependent of the behavior of joints between the concrete modules. To accurately predict the floating structure response under the ultimate loading, knowledge of joint behavior is essential. This study aims to investigate the structural behavior of concrete module joints under various configuration of joint and confining stress levels. The shear behavior, shear capacity and crack patterns of shear keys in concrete module have been studied. Test results indicated that the shear capacity of joints increased as shear key inclination increased. In addition, shear capacity of concrete module joint increased with the increase of confining stress levels. The test results were compared with the AASHTO design recommendations. The AASHTO design recommendations underestimated the shear strength of test specimens.

Evaluation of Fretting Fatigue Behavior of Aluminum Alloy(A17050-T7451) Under Cyclic Bending Load (알루미늄 합금(AI7050-T7451)의 반복 굽힘 하중하의 프레팅 피로거동 평가)

  • Kim, Jong-Sung;Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Hyun-Deog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Fretting damage reduces fatigue life of the material due to low amplitude cyclic sliding and changes in the contact surfaces of strongly connected machine and structures such as bolt, key, fixed rivet and connected shaft, which have relative slip of repeatedly very low frequency amplitude. In this study, the fretting fatigue behavior of 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were evaluated. The plain fatigue test and fretting fatigue test under cyclic bending load carried out commercial bending fatigue tester and specially devised equipments to cause fretting damage. From these experimental work, the following results obtained: (1) The plain fatigue limit for stress ratio R=-l was about 151MPa. (2) In case of fretting fatigue, fatigue limit for stress ratio R=-l about 72MPa, the fatigue limit for R=0 about 81MPa, and the fatigue limit for R=0.3 about 93MPa. (3) The fatigue limit reduction rates by the fretting damage were about 52%(R=-1), 46%(R=0) and 38%(R=0.3) respectively. (4) The fatigue limit reduction rate decreased with stress ratio increase. In fretting bending test, as stress ratio increased, occurrence of initial oblique crack by fretting decreased or phased out, so that fracture surfaces were formed by plain fatigue crack occurrence, and such tendency was notable as stress amplitude increased. (5) Tire tracks and rubbed scars were observed in the fracture surface and contacted surface.

Material Strength and Deformation Performance of Highly Ductile High-Strength Cement Composite (높은 연성을 갖는 고강도 시멘트계 복합체의 재료강도 및 변형성능)

  • Choi, Jeong-Il;Lee, Bang Yeon;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • The purpose of this study is to investigate experimentally the material strength and tensile deformation behavior of highly ductile high-strength cement composites reinforced by synthetic fibers. Materials and mixture proportions were designed to make composites with a strength level of 80 MPa in compression. Two kinds of polyethylene fibers with different properties were employed as reinforcing fibers. A series of experiments on density, compressive strength, and deformation performance was performed. Experimental results showed that the tensile behavior and cracking patterns of cement composite strongly depends on the types of reinforcing fibers. It was also demonstrated that the cement composite with a compressive strength of 77.7 MPa and a tensile strain capacity of 7.9% can be manufactured by using a proper polyethylene fiber.

Development of bio-inspired hierarchically-structured skin-adhesive electronic patch for bio-signal monitoring (생체정보 진단을 위한 생체모사 계층구조 기반 피부 고점착 전자 패치 개발)

  • Kim, Da Wan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.749-754
    • /
    • 2022
  • High adhesion and water resistance of the skin surface are required for wearable and skin-attachable electronic patches in various medical applications. In this study, we report a stretchable electronic patch that mimics the drainable structure pattern of the hexagonal channels of frog's pads and the sucker of an octopus based on carbon-based conductive polymer composite materials. The hexagonal channel structure that mimics the pads of frogs drains water and improves adhesion through crack arresting effect, and the suction structure that mimics an octopus sucker shows high adhesion on wet surfaces. In addition, the high-adhesive electronic patch has excellent adhesion to various surfaces such as silicone wafer (max. 4.06 N/cm2) and skin replica surface (max. 1.84 N/cm2) in dry and wet conditions. The high skin-adhesive electronic patch made of a polymer composite material based on a polymer matrix and carbon particles can reliably detect electrocardiogram (ECG) in dry and humid environments. The proposed electronic patch presents potential applications for wearable and skin-attachable electronic devices for detecting various biosignals.

Development of Diagnosis Application for Rail Surface Damage using Image Analysis Techniques (이미지 분석기법을 이용한 레일표면손상 진단애플리케이션 개발)

  • Jung-Youl Choi;Dae-Hui Ahn;Tae-Jun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.511-516
    • /
    • 2024
  • The recently enacted detailed guidelines on the performance evaluation of track facilities presented the necessary requirements regarding the evaluation procedures and implementation methods of track performance evaluation. However, the grade of rail surface damage is determined by external inspection (visual inspection), and there is no choice but to rely only on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we attempted to develop a diagnostic application that can diagnose rail internal defects using rail surface damage. In the field investigation, rail surface damage was investigated and patterns were analyzed. Additionally, in the indoor test, SEM testing was used to construct image data of rail internal damage, and crack length, depth, and angle were quantified. In this study, a deep learning model (Fast R-CNN) using image data constructed from field surveys and indoor tests was applied to the application. A rail surface damage diagnosis application (App) using a deep learning model that can be used on smart devices was developed. We developed a smart diagnosis system for rail surface damage that can be used in future track diagnosis and performance evaluation work.

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

Fabrication and Electrical Insulation Property of Thick Film Glass Ceramic Layers on Aluminum Plate for Insulated Metal Substrate (알루미늄 판상에 글라스 세라믹 후막이 코팅된 절연금속기판의 제조 및 절연특성)

  • Lee, Seong Hwan;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.39-46
    • /
    • 2017
  • This paper presents the fabrication of ceramic insulation layer on metallic heat spreading substrate, i.e. an insulated metal substrate, for planar type heater. Aluminum alloy substrate is preferred as a heat spreading panel due to its high thermal conductivity, machinability and the light weight for the planar type heater which is used at the thermal treatment process of semiconductor device and display component manufacturing. An insulating layer made of ceramic dielectric film that is stable at high temperature has to be coated on the metallic substrate to form a heating element circuit. Two technical issues are raised at the forming of ceramic insulation layer on the metallic substrate; one is delamination and crack between metal and ceramic interface due to their large differences in thermal expansion coefficient, and the other is electrical breakdown due to intrinsic weakness in dielectric or structural defects. In this work, to overcome those problem, selected metal oxide buffer layers were introduced between metal and ceramic layer for mechanical matching, enhancing the adhesion strength, and multi-coating method was applied to improve the film quality and the dielectric breakdown property.