• Title/Summary/Keyword: 균열특성화

Search Result 239, Processing Time 0.027 seconds

A Basic Study on the Tunnel Collapse Analysis and the Reasonable Inforence of Tunnel Collapse Considering a Characteristic of Engineering Geology (지질공학적 특성을 고려한 터널 붕락 분석과 합리적인 터널 붕락 추론에 관한 기본 연구)

  • 마상준;서경원;배규진;이석원
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.117-127
    • /
    • 2000
  • 터널 시공과 굴착과정에서 파쇄대, 절리, 연약대, 균열 등 암반에서의 불연속면은 중요한 역할을 한다. 본 연구에서는 지반 고유의 특징인 불확실성에 의한 터널 설계와 시공 과정에서 겪는 많은 시행오차를 최소화하기 위해서 국내의 터널 붕락 현장의 지반조사 자료를 분석하여 터널 붕락 유형 및 규모를 제시할수 있는 Geo-predict 시스템을 개발하였다. Geo-predict 시스템은 총 104개 터널 붕괴/붕락자료(국외84개, 국내20개)를 분석한 자료를 테이터베이스로 인공신경망 학습을 토해서 터널 붕괴 형태와 규모를 추론하는 시스템이다. 본 논문에서는 Geo-predict의 개발과정 및 구성.기능을 소개하였으며 104개 터널 현장 자료를 지반조건별로 분석하고 이를 데이터베이스화하여 인공신경함을 이용한 추론 시스탬을 구축하고, 2개 고속전철 터널현장과 1개 지하철 시공현장에 적용성 평가를 실시하여, 터널의 붕락 가능 및 붕락 규모를 추론하였다.

  • PDF

Improving Reproducibility of Coercivity of HDDR-treated Nd-Fe-B-type Material by Controlling Hydrogen Decrepitation (수소파쇄 제어를 통한 HDDR 처리한 Nd-Fe-B계 재료의 보자력 재현성 향상)

  • Kim, Kyung Min;Kim, Ja Young;Kwon, Hae-Woong;Lee, Jeong Gu;Yu, Ji Hun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.111-116
    • /
    • 2015
  • Practical difficulty in the HDDR (hydrogenation - disproportionation - desorption - recombination) processing of Nd-Fe-B-type alloy is a poor reproducibility of coercivity of the HDDR-treated material. In an attempt to improve the reproducibility of coercivity of the HDDR-treated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy, the hydrogen decrepitation was carefully controlled so as to induce more extensive micro-cracks in the particle. Prior to the hydrogenation and disproportionation reaction of HDDR processing, an additional hydrogen degassing was carried out at an elevated temperature of $600^{\circ}C$ under vacuum for the previously hydrogen decrepitated particle. During the additional hydrogen degassing the lattice of hydrogen absorbed $Nd_2Fe_{14}B$ phase was further shrunken, hence more microcracks were introduced in the particle due to its brittle nature. Particles with more micro-cracks had more homogeneous hydrogen absorption and desorption reaction during the HDDR-treatment. The improved reproducibility of coercivity of the HDDR-treated material was attributed to the improved homogeneity of the HDDR reactions due to the presence of more micro-cracks.

A Study on the Manufacturing Properties of Soil Mural's Finishing Layer with Different Types and Concentration of Natural Adhesives (천연 보강 매제의 종류 및 농도에 따른 토벽화 마감층 제작특성 연구)

  • Moon, Hye Young;Lee, Kyeong Min;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.34 no.3
    • /
    • pp.143-155
    • /
    • 2018
  • In this study, we investigated the properties and manufacturing methods of soil mural finishing layers fabricated using animal glue, starch adhesive(wheat paste), and Dobak glue. We assessed the workability and weatherproofing properties of the earthen plaster and finishing layers fabricated using concentrations of 3%, 5%, 7% and 10% for each adhesive. The results showed that a mixture using 3% or 5% starch adhesive or 3% Dobak glue was suitable for constructing the finishing layer. For finishing layers made with animal glue, earthen plaster had poor workability. It was dry and easily broken as the concentrations of animal glue increased. However, specimens made with low concentrations of animal glue did not exhibit surface deterioration after a freezing-thawing test. Therefore, animal glue mixtures could possibly be used for constructing finishing layers in concentrations lower than 3%. Mixtures containing starch adhesive produced plasters with good workability. Additionally, starch adhesive enhanced compression strength. However, when starch adhesive was mixed at concentrations above 7%, the surface exhibited roughening and staining in freezing-thawing tests. When Dobak glue was used in mixtures, it enhanced compression strength, but concentrations above 5% produced specimens with surface cracking. For concentrations of 3%, there were no cracks and the specimens were stable after freezing-thawing tests, so concentrations below 3% of Dobak glue are suitable for constructing finishing layers. We expect this study will be useful for restoring the traditional technology of soil mural finishing layers and suggest using adhesives to construct the finishing layer.

A Study on the Strength and Fracture Toughness of High Strength Hardened Cement Paste (고강도 시멘트 경화체의 강도 및 파괴인성에 관한 연구)

  • 김정환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.151-158
    • /
    • 1994
  • In this work, in order to inrprove the flexural strength of hardened portlarid cerncrit paste, mix ing water was reduced to water ccrnent ratio of 0.1 aid water soluble polymer such as hydroxy propyl methyl cellulose was adclelri to the paste to obtain a better dispersion. The paste was kneaded by the twin roll mill for cornpact and homogeneous mixing. The high strength mechanism of the hardened cement paste may be due to the removal of macropores larger than 100${\mu}m$, the reduction of capillary pores acting as the passage of crack propagation, the increase of Young's moculus with iticrease of unhytlratcci cenxxnt ard the incicasc of fracture toughnevs with the crack toughening mechanism (grain bridging, polymer fibril bridging and fritional inter-locking).

A Study on the Welding Properties of SM570TMC Steel Plate (SM570TMC 강재의 용접부 특성에 관한 연구)

  • Im, Sung Woo;Chang, In Hwa;Chung, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.665-675
    • /
    • 2006
  • With building structures becoming higher and longer-spanned, the need for high-strength and reliable steel is increasing. For this reason, the SM570TMC steel plate was developed. Despite its excellent mechanical properties, however, its welding properties, which are well-known to be superior to those of other equivalent steel plates, have not been verified yet. In this study, welding specimens fabricated via SA and FCA welding, with two domestic welding materials and one Japanese welding material in site welding conditions, were evaluated.

Compressive Strength and Tensile Properties of High Volume Slag Cement Composite Incorporating Phase Change Material (상변화 물질을 함유한 하이볼륨 슬래그 시멘트 복합재료의 압축강도와 인장특성)

  • Kang, Su-Tae;Choi, Jeong-Il;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.183-189
    • /
    • 2020
  • The purpose of this study is to investigate the compressive and tensile properties of high volume slag cement-based fiber-reinforced composite incorporating phase change material. Four mixtures were determined according to calcium hydroxide and expansive admixture, and the compressive strength and tension tests were performed. Test results showed that four mixtures showed a compressive strength over 51MPa and a tensile ductility over 3.2%. It was observed that calcium hydroxide and expansive admixture influenced the compressive and tensile performance, and the strength, ductility, and cracking patterns of composite could be improved by including proper amount of calcium hydroxide and expansive admixture.

Potential of HAZ Property Improvement through Control of Grain Boundary Character in a Wrought Ni-based Superalloy (단련용 Ni기 초내열합금의 입계구조 제어를 통한 HAZ 특성 향상 가능성 고찰)

  • Hong, H.U.;Kim, I.S.;Choi, B.G.;Jeong, H.W.;Yoo, Y.S.;Jo, C.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.43-43
    • /
    • 2009
  • 단련용 다결정 Ni기 초내열합금은 우수한 가공성, 내산화성, 고온특성 등으로 가스터빈 연소기, 디스크, 증기발생기 전열관 등 발전용 고온부품 소재에 널리 적용되고 있다. 최근 발전설비의 고효율화를 꾀하기 위해 작동 온도를 현격히 증가시키는 기술방향으로 발전하고 있고, 소재측면에서는 기존의 초내열합금 대비 고기능성을 확보할 수 있는 차세대 Ni기 초내열합금 개발이 유럽, 미국, 일본, 중국 등을 중심으로 활발히 이루어지고 있다. 이러한 소재의 고온강도 (온도수용성)를 향상시키기 위해서는 통상 규칙격자 금속간화합물인 $Ni_3(Al,Ti)-{\gamma}'$상의 분율을 증가시킬 수 있지만, ${\gamma}'$상분율이 증가할 경우 용접 및 후열처리 동안 용접열영향부 (HAZ)에서 액화균열이 발생할 가능성이 높아진다. 결정립계를 따라 발생하는 HAZ 액화균열은 입계특성에 의해 크게 영향을 받을 것으로 판단된다. 한편, 본 연구자들은 최근 입계 serration 현상을 단련용 합금에 도입시키는 특별한 열처리를 이론적 접근법을 통해 개발하였다. 형성된 파형입계는 결정학적인 관점에서 조밀 {111} 입계면을 갖도록 분해 (dissociation)되어 낮은 계면에너지를 갖게 됨을 확인하였으며, 입계형상 변화뿐만 아니라 탄화물 특성변화까지 유도하여 크리프 수명을 기존대비 약 40% 정도 향상시킴을 확인하였다. 이러한 직선형 입계 대비 'special boundary'로 간주되는 파형입계가 도입될 경우, HAZ 결정립크기 변화 및 액화거동에 미치는 영향을 고찰하고, 아울러 입계특성 제어가 용접성/용접부 품질 향상에 기여할 수 있는 가능성도 토의하고자 하였다. 본 연구에서는 재현 HAZ 열사이클 시험을 통해 미세구조를 정량적으로 비교하였다. 상대적으로 입계구조가 안정된 파형입계의 이동속도가 高계면 에너지를 갖는 직선형 입계보다 느려 HAZ 결정립 성장이 효과적으로 억제됨을 확인할 수 있었다. 입계 액화거동을 살펴보면, 두 시편 모두 $M_{23}C_6$, MC 등 입계탄화물 계면이 빠른 승온중 액화반응 (constitutional liquation)에 의해 입계가 액화되었으며, 이후 급냉에 의해 입계에 액상막이 존재한 흔적이 발견되었다. 최고온도별로 입계액화 폭/비율을 정량적으로 비교한 결과, 파형입계가 직선입계 대비 대체로 낮음을 확인할 수 있었으며, 때때로 액화되지 않고 잔존하는 입계 탄화물이 관찰되었다. 재현 HAZ 미세조직을 통해 Hot ductility 시험 결과를 유추하자면, 파형입계가 직선입계 보다 좁은 취성온도영역 (Brittle Temperature Range)을 나타낼 것으로 예상되어, 입계특성제어에 의해 Ni기 초내열합금의 용접성을 향상 가능성을 확인하였다.

  • PDF

Evaluation on the Properties of Ternary blended Cement Concrete using Industrial Byproducts (산업부산물을 혼합하여 제작한 3성분계 시멘트 콘크리트의 성능 평가)

  • Kim, Chun Ho;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2014
  • Nowadays, due to the development of industrial and civil engineering technology, enlargement and diversification of concrete structures are being tried. At the same time, the hydration heat generated during the construction of large structures lead to thermal crack, which is occurs causing a problem that durability degradation. In this paper, in order to study the durability and reducing hydration heat of concrete according to the types of cement, that is ordinary portland cement, fly ash cement mixed with a two-component, ternary blend cement mixed with fly ash and blast furnace slag and low heat cement concrete are produced, and compare and analyze the results using property, durability and hydration characteristics, ternary blend cement is appeared to be the most excellent in durability and reduction of hydration heat, and it was determined suitable for construction of mass concrete and requiring durability.

The Experimental Study on Preparation Characteristics of Self-healing Microcapsules for Mixing Cement Composites Utilizing Liquid Inorganic Materials (액상 무기재료를 활용한 시멘트 복합재료 혼합용 자기치유 마이크로 캡슐의 제조 특성에 관한 실험적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Kim, Cheol-Gyu;Lim, Hak-Sang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.236-244
    • /
    • 2018
  • In this study, we tried to fabricate self - healing microcapsules using liquid inorganic materials which can be mixed directly with cement composites. The basic properties of the liquid inorganic material were evaluated and microencapsulation was performed. The focus of this paper is on the quality and manufacturing characteristics of cement composites rather than the healing effects of self - healing microcapsules according to mixed capsules. Test results, the self-healing microcapsules encapsulate liquid inorganic material which is stable at room temperature and has high crack followability, and the yield is over 90%. The size of self - healing microcapsule was able to change according to the synthetic agitation speed and it was able to secure more than 70% of target size. In addition, the loss of less than 10% was found to occur through the membrane strengthening of self - healing microcapsules, and it could be reduced by 50% compared with the case without membrane strengthening.

A Study on Hydraulic Characteristics of Rock Joints Dependant on JRC Ranges (JRC 등급에 따른 절리면 수리특성 연구)

  • Chae Byung-Gon;Seo Yong-Seok;Kim Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.461-468
    • /
    • 2004
  • In order to characterize hydraulic property dependant on join roughness in rock mass, this study computed permeability coefficients on each range of joint roughness coefficient (JRC) suggested by Barton(1976). For a quantitative analysis of roughness components spectral analysis using the fast fourier transform was performed to select effective frequencies on each PC range. The results of spectral analyses show that low ranges of the JRC are mainly composed of low frequency domain, while high ranges of the JRC have dominant components at high frequency domain. The inverse Fourier transform made it possible to generate joint models of each JRC range using the effective frequencies of roughness spectrum. The homogenization analysis was applied to calculate permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. According to the calculation results, permeability coefficients were distributed between $10^{-3}m/sec\;and\;10^{-4}/sec$. In cases of sheared joint models permeability coefficients were plotted between $10^{-4}m/sec\;and\;10^{-5}/sec$, showing irregular distribution of permeability coefficients on each IRC range. The differences of permeability coefficients for the same aperture models or for the sheared joint models indicate that changes of roughness pattern influence on permeability coefficients. Therefore, the effect of joint roughness should be considered to characterize hydraulic properties in rock joints.