• Title/Summary/Keyword: 균열탐지

Search Result 131, Processing Time 0.025 seconds

A study on evaluation of levee crack based on ORS (광학원격탐사 기반의 제방 균열 평가에 관한 연구)

  • Kim, Jong Tae;Lee, Chang Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.224-224
    • /
    • 2021
  • 광학원격탐사를 통해 취득할 수 있는 초분광 영상은 관련 기술의 발전으로 다양하게 활용이 되고 있다. 특히 초경량 UAV를 기반으로 초분광 센서를 적용한 광학원격탐사는 광범위하게 분포하는 국내 제방의 불안정 요소를 탐지하는데 보다 효과적일 것으로 판단되며 대상에 대한 광역모니터링을 통해 많은 자료를 얻을 수 있고, 고해상도 영상 자료를 활용한 세밀한 분광 및 공간정보 분석이 가능하다. 본 연구에서는 제방 균열 평가를 위해 UAV를 활용하여 안동댐 하류 제방 균열을 대상으로 고해상도 초분광 영상을 취득하였으며, 기 개발된 제방 균열 평가 소프트웨어를 이용하여 조도와 최대강도 데이터에 따른 제방 균열 평가를 실시하였다. 연구지역의 지질은 중생대 백악기의 일직층으로써 적색이암, 셰일, 역질사암 등이 주를 이루고 있으며 제방 내 토양은 대부분 입도가 균일하며 일부 역암이 관찰되는 지역으로 조립토가 주를 이루고 있다. 기 개발된 소프트웨어의 특징은 측정된 데이터를 바탕으로 균열 여부를 판별할 수 있는 프로그램으로써 측정지점마다 별도의 조도와 최대강도 데이터가 주어졌을때, 해당 데이터에 대한 균열 여부를 판별할 수 있다. 주요기능은 제방 균열 여부 판단, 데이터 입력 및 판단을 출력하기 위한 GUI 인터페이스를 제공한다. 연구 결과 제방 균열 평가 소프트웨어를 적용하여 균열과 비균열에 대한 탐지가 가능한 것으로 나타났다. 특히 비균열 포인트의 경우 암석이나 토양의 성질, 빛의 반사에 따라 일부 차이가 있지만 균열은 매우 유사한 반사율 정보를 보이는 것으로 나타났다.

  • PDF

Detection Method for Road Pavement Defect of UAV Imagery Based on Computer Vision (컴퓨터 비전 기반 UAV 영상의 도로표면 결함탐지 방안)

  • Joo, Yong Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.599-608
    • /
    • 2017
  • Cracks on the asphalt road surface can affect the speed of the car, the consumption of fuel, the ride quality of the road, and the durability of the road surface. Such cracks in roads can lead to very dangerous consequences for long periods of time. To prevent such risks, it is necessary to identify cracks and take appropriate action. It takes too much time and money to do it. Also, it is difficult to use expensive laser equipment vehicles for initial cost and equipment operation. In this paper, we propose an effective detection method of road surface defect using ROI (Region of Interest) setting and cany edge detection method using UAV image. The results of this study can be presented as efficient method for road surface flaw detection and maintenance using UAV. In addition, it can be used to detect cracks such as various buildings and civil engineering structures such as buildings, outer walls, large-scale storage tanks other than roads, and cost reduction effect can be expected.

Deep Learning Models for Autonomous Crack Detection System (자동화 균열 탐지 시스템을 위한 딥러닝 모델에 관한 연구)

  • Ji, HongGeun;Kim, Jina;Hwang, Syjung;Kim, Dogun;Park, Eunil;Kim, Young Seok;Ryu, Seung Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.161-168
    • /
    • 2021
  • Cracks affect the robustness of infrastructures such as buildings, bridge, pavement, and pipelines. This paper presents an automated crack detection system which detect cracks in diverse surfaces. We first constructed the combined crack dataset, consists of multiple crack datasets in diverse domains presented in prior studies. Then, state-of-the-art deep learning models in computer vision tasks including VGG, ResNet, WideResNet, ResNeXt, DenseNet, and EfficientNet, were used to validate the performance of crack detection. We divided the combined dataset into train (80%) and test set (20%) to evaluate the employed models. DenseNet121 showed the highest accuracy at 96.20% with relatively low number of parameters compared to other models. Based on the validation procedures of the advanced deep learning models in crack detection task, we shed light on the cost-effective automated crack detection system which can be applied to different surfaces and structures with low computing resources.

Image Processing Algorithm for Crack Detection of Sewer with low resolution (저해상도 하수관거의 균열 탐지를 위한 영상처리 알고리즘)

  • Son, Byung Jik;Jeon, Joon Ryong;Heo, Gwang Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.590-599
    • /
    • 2017
  • In South Korea, sewage pipeline exploration devices have been developed using high resolution digital cameras of 2 mega-pixels or more. On the other hand, most devices are less than 300 kilo-pixels. Moreover, because 100 kilo-pixels devices are used widely, the environment for image processing is very poor. In this study, very low resolution ($240{\times}320$ = 76,800 pixels) images were adapted when it is difficult to detect cracks. Considering that the images of sewers in South Korea have very low resolution, this study selected low resolution images to be investigated. An automatic crack detection technique was studied using digital image processing technology for low resolution images of sewage pipelines. The authors developed a program to automatically detect cracks as 6 steps based on the MATLAB functions. In this study, the second step covers an algorithm developed to find the optimal threshold value, and the fifth step deals with an algorithm to determine cracks. In step 2, Otsu's threshold for images with a white caption was higher than that for an image without caption. Therefore, the optimal threshold was found by decreasing the Otsu threshold by 0.01 from the beginning. Step 5 presents an algorithm that detects cracks by judging that the length is 10 mm (40 pixels) or more and the width is 1 mm (4 pixels) or more. As a result, the crack detection performance was good despite the very low-resolution images.

Crack detection in concrete using deep learning for underground facility safety inspection (지하시설물 안전점검을 위한 딥러닝 기반 콘크리트 균열 검출)

  • Eui-Ik Jeon;Impyeong Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.555-567
    • /
    • 2023
  • The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.

Application of Mask R-CNN Algorithm to Detect Cracks in Concrete Structure (콘크리트 구조체 균열 탐지에 대한 Mask R-CNN 알고리즘 적용성 평가)

  • Bae, Byongkyu;Choi, Yongjin;Yun, Kangho;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.33-39
    • /
    • 2024
  • Inspecting cracks to determine a structure's condition is crucial for accurate safety diagnosis. However, visual crack inspection methods can be subjective and are dependent on field conditions, thereby resulting in low reliability. To address this issue, this study automates the detection of concrete cracks in image data using ResNet, FPN, and the Mask R-CNN components as the backbone, neck, and head of a convolutional neural network. The performance of the proposed model is analyzed using the intersection over the union (IoU). The experimental dataset contained 1,203 images divided into training (70%), validation (20%), and testing (10%) sets. The model achieved an IoU value of 95.83% for testing, and there were no cases where the crack was not detected. These findings demonstrate that the proposed model realized highly accurate detection of concrete cracks in image data.

Improvement of concrete crack detection using Dilated U-Net based image inpainting technique (Dilated U-Net에 기반한 이미지 복원 기법을 이용한 콘크리트 균열 탐지 개선 방안)

  • Kim, Su-Min;Sohn, Jung-Mo;Kim, Do-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.65-68
    • /
    • 2021
  • 본 연구에서는 Dilated U-Net 기반의 이미지 복원기법을 통해 콘크리트 균열 추출 성능 개선 방안을 제안한다. 콘크리트 균열은 구조물의 미관상의 문제뿐 아니라 추후 큰 안전사고의 원인이 될 수 있어 초기대응이 중요하다. 현재는 점검자가 직접 육안으로 검사하는 외관 검사법이 주로 사용되고 있지만, 이는 정확성 및 비용, 시간, 그리고 안전성 면에서 한계를 갖고 있다. 이에 콘크리트 구조물 표면에 대해 획득한 영상 처리 기법을 사용한 검사 방식 도입의 관심이 늘어나고 있다. 또한, 딥러닝 기술의 발달로 딥러닝을 적용한 영상처리의 연구 역시 활발하게 진행되고 있다. 본 연구는 콘크리트 균열 추개선출 성능 개선을 위해 Dilated U-Net 기반의 이미지 복원기법을 적용하는 방안을 제안하였고 성능 검증 결과, 기존 U-Net 기반의 정확도가 98.78%, 조화평균 82.67%였던 것에 비해 정확도 99.199%, 조화평균 88.722%로 성능이 되었음을 확인하였다.

  • PDF

Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data (드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발)

  • Young-Ju Kwon;Sung-ho Mun
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Drones are used in various fields, including land survey, transportation, forestry/agriculture, marine, environment, disaster prevention, water resources, cultural assets, and construction, as their industrial importance and market size have increased. In this study, image data for deep learning was collected using a mavic3 drone capturing images at a shooting altitude was 20 m with ×7 magnification. Swin Transformer and UperNet were employed as the backbone and architecture of the deep learning model. About 800 sheets of labeled data were augmented to increase the amount of data. The learning process encompassed three rounds. The Cross-Entropy loss function was used in the first and second learning; the Tversky loss function was used in the third learning. In the future, when the crack detection model is advanced through convergence with the Internet of Things (IoT) through additional research, it will be possible to detect patching or potholes. In addition, it is expected that real-time detection tasks of drones can quickly secure the detection of pavement maintenance sections.

Deep learning based crack detection from tunnel cement concrete lining (딥러닝 기반 터널 콘크리트 라이닝 균열 탐지)

  • Bae, Soohyeon;Ham, Sangwoo;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.583-598
    • /
    • 2022
  • As human-based tunnel inspections are affected by the subjective judgment of the inspector, making continuous history management difficult. There is a lot of deep learning-based automatic crack detection research recently. However, the large public crack datasets used in most studies differ significantly from those in tunnels. Also, additional work is required to build sophisticated crack labels in current tunnel evaluation. Therefore, we present a method to improve crack detection performance by inputting existing datasets into a deep learning model. We evaluate and compare the performance of deep learning models trained by combining existing tunnel datasets, high-quality tunnel datasets, and public crack datasets. As a result, DeepLabv3+ with Cross-Entropy loss function performed best when trained on both public datasets, patchwise classification, and oversampled tunnel datasets. In the future, we expect to contribute to establishing a plan to efficiently utilize the tunnel image acquisition system's data for deep learning model learning.

Detection of Micro-Crack Using a Nonlinear Ultrasonic Resonance Parameters (비선형 초음파공명 특성을 이용한 미세균열 탐지)

  • Cheong, Yong-Moo;Lee, Deok-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.369-375
    • /
    • 2012
  • In order to overcome the detection limit by the current nondestructive evaluation technology, a nonlinear resonant ultrasound spectroscopy(NRUS) technique was applied for detection of micro-scale cracks in a material. A down-shift of the resonance frequency and a variation of normalized amplitude of the resonance pattern were suggested as the nonlinear parameter for detection of micro-scale cracks in a materials. A natural-like crack were produced in a standard compact tension(CT) specimen by a low cycle fatigue test and the resonance patterns were acquired in each fatigue step. As the exciting voltage increases, a down-shift of resonance frequency were increases as well as the normalized amplitude decrease. This nonlinear effects were significant and even greater in the cracked specimen, but not observed in a intact specimen.