• Title/Summary/Keyword: 균열지수

Search Result 213, Processing Time 0.022 seconds

A Study on the Conservation State and Plans for Stone Cultural Properties in the Unjusa Temple, Korea (운주사 석조문화재의 보존상태와 보존방안에 대한 연구)

  • Sa-Duk, Kim;Chan-Hee, Lee;Seok-Won, Choi;Eun-Jeong, Shin
    • Korean Journal of Heritage: History & Science
    • /
    • v.37
    • /
    • pp.285-307
    • /
    • 2004
  • Synthesize and examine petrological characteristic and geochemical characteristic by weathering formation of rock and progress of weathering laying stress on stone cultural properties of Unjusa temple of Chonnam Hwasun county site in this research. Examine closely weathering element that influence mechanical, chemical, mineralogical and physical weathering of rocks that accomplish stone cultural properties and these do quantification, wish to utilize by a basic knowledge for conservation scientific research of stone cultural properties by these result. Enforced component analysis of rock and mineralogical survey about 18 samples (pyroclastic tuff; 7, ash tuff; 4, granite ; 4, granitic gneiss; 3) all to search petrological characteristic and geochemical characteristic by weathering of Unjusa temple precinct stone cultural properties and recorded deterioration degree about each stone cultural properties observing naked eye. Major rock that constitution Unjusa temple one great geological features has strike of N30-40W and dip of 10-20NE being pyroclastic tuff. This pyroclastic tuff is ranging very extensively laying center on Unjusa temple and stone cultural properties of precinct is modeled by this pyroclastic tuff. Stone cultural propertieses of present Unjusa temple precinct are accomplishing structural imbalance with serious crack, and because weathering of rock with serious biological pollution is gone fairly, rubble break away and weathering and deterioration phenomenon such as fall off of a particle of mineral are appearing extremely. Also, a piece of iron and cement mortar of stone cultural properties everywhere are forming precipitate of reddish brown and light gray being oxidized. About these stone cultural properties, most stone cultural propertieses show SD(severe damage) to MD(moderate damage) as result that record Deterioration degree. X-ray diffraction analysis result samples of each rock are consisted of mineral of quartz, orthoclase,plagioclase, calcite, magnetite etc. Quartz and feldspar alterated extremely in a microscopic analysis, and biotite that show crystalline form of anhedral shows state that become chloritization that is secondary weathering mineral being weathered. Also, see that show iron precipitate of reddish brown to crack zone of tuff everywhere preview rock that weathering is gone deep. Tuffs that accomplish stone cultural properties of study area is illustrated to field of Subalkaline and Peraluminous, $SiO_2$(wt.%) extent of samples pyroclastic tuff 70.08-73.69, ash tuff extent of 70.26-78.42 show. In calculate Chemical Index of Alteration(CIA) and Weathering Potential Index(WPI) about major elements extent of CIA pyroclastic tuff 55.05-60.75, ash tuff 52.10-58.70, granite 49.49-51.06 granitic gneiss shows value of 53.25-67.14 and these have high value gneiss and tuffs. WPI previews that is see as thing which is illustrated being approximated in 0 lines and 0 lines low samples of tuffs and gneiss is receiving esaily weathering process as appear in CIA. As clay mineral of smectite, zeolite that is secondary weathering produce of rock as result that pick powdering of rock and clothing material of stone cultural properties observed by scanning electron micrographs (SEM). And roots of lichen and spore of hyphae that is weathering element are observed together. This rock deep organism being coating to add mechanical weathering process of stone cultural properties do, and is assumed that change the clay mineral is gone fairly in stone cultural properties with these. As the weathering of rocks is under a serious condition, the damage by the natural environment such as rain, wind, trees and the ground is accelerated. As a counter-measure, the first necessary thing is to build the ground environment about protecting water invasion by making the drainage and checking the surrounding environment. The second thing are building hardening and extirpation process that strengthens the rock, dealing biologically by reducing lichens, and sticking crevice part restoration using synthetic resin. Moreover, it is assumed to be desirable to build the protection facility that can block wind, sunlight, and rain which are the cause of the weathering, and that goes well with the surrounding environment.

Material Characteristics and Deterioration Assessment of the Stone Buddhas and Shrine in Unjusa Temple, Hwasun, Korea (화순 운주사 석조불감의 재질특성과 풍화훼손도 평가)

  • Park, Sung-Mi;Lee, Myeong-Seong;Choi, Seok-Won;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.23-36
    • /
    • 2008
  • The stone Buddhas and Shrine of Unjusa temple (Korea Treasure No. 797) in Hwasun formed in Koryo Dynasty are unique style which the Buddha faces each other the back parts of south and north within the stone Shrine. The stone Buddhas and Shrine are highly evaluated in historical, artistic and academic respects. But, the stone properties have been exposed in the open system various aspects of degradations weathered for a long time without specific protective facilities. The rock materials of the stone Buddhas and Shrine are about 47 blocks, and total press load is about 56.6 metric ton. The host rocks composed mainly of white grey hyaline lithic tuff and rhyolitic tuff breccia. In addition, biotite granite used as part during the restoration works. The chemical index of alteration for host tuffaceous rocks and the replacement granites range from 52.1 to 59.4 and 50.0 to 51.0, respectively. Weathering types for the stone Buddhas and Shrine were largely divided with physical, chemical and biological weathering to make a synthetic deterioration map according to aspects of damage, and estimate share as compared with surface area. Whole deterioration degrees are represented that physical weathering appeared exfoliation. Chemical weathering is black coloration and biological weathering of grey lichen, which show each lighly deterioration degrees. According to deterioration degree by direction of stone Buddhas and Shrine, physical weathering mostly appeared by 39.1% on the sorthern part, and chemical weathering is 61.2% high share on the western part. Biological weathering showed 38.3% the largest distribution on the southern part. Therefore, it is necessary to try hardening for the parts with serious cracks or exfoliations, remove secondary contaminants and organisms through regular cleaning. Also necessary to make a plan to remove moisture of the ground which causes weathering, and estimate that need established and scientific processing through clinical demonstration of conservation plan that chooses suitable treatment.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(3))

  • Park, Deok-Won;Park, Eui-Seob;Jung, Yong-Bok;Lee, Tae-Jong;Song, Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.