• Title/Summary/Keyword: 균열저항성능

Search Result 141, Processing Time 0.026 seconds

Evaluation of Crack Resistant Performance in Cement Mortar with Steel Fiber and CSA Expansion Admixture (CSA 팽창재를 혼입한 강섬유 보강 모르타르의 균열 저항성능 평가)

  • Ahn, Jung-Kil;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • Steel fiber is a effective composite for crack resistance and improve structural performance under tensile loading. This study presents an evaluation of crack resistance and structural performance in cement mortar with steel fiber and expansion agent through internal chemical prestressing. For this work, cement mortar samples with 10% replacement of cement binder with CSA (Calcium-Sulfo-Aluminate) expansion agent and 1% volume ratio of steel fiber are prepared. Including basic mechanical properties, initial cracking load and fracture energy are evaluated in cement mortar beam with notch. Initial cracking load and fracture energy in cement mortar with CSA and steel fiber increase by 1.75 and 1.41~1.53 times compared with those in cement mortar with steel fiber. With optimum mix design for steel fiber and CSA expansive agent, the composite with chemical prestressing can be applied to various members and effectively improve crack resistance to external loading.

Experimental Study for Performance Evaluation of Structural Details of Girder-Abutment Joint in Integral Abutment Steel Bridge (일체식교대 강교량의 거더-교대 연결부 상세의 거동평가를 위한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Choi, Woo-Jin;Kim, Jun-Hwan;Ahn, Jin-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.61-72
    • /
    • 2011
  • In this study, the structural details of steel girder-abutment joints with shear connectors and tie bars were suggested to improve the rigid behavior and crack-resisting capacity of the joints in integral bridges. Experimental loading tests of steel girder-abutment joint specimens with the proposed and empirically constructed structural details were carried out, and the capacities and behavioral characteristics of the joints were evaluated through loading tests. Based on the results of the loading tests, it was estimated that all types of tested joints can be applied to the steel girder-abutment joints because they have sufficient stiffness and crack-resisting capacity under the required design and yield loads. According to the initial stiffness, crack propagations, and load-strain relationships, however, the joints with shear connectors and tie bars showed better structural behaviors compared to the empirically constructed joint.

A Study on the Flexural Performance of Steel Fiber-Reinforced Beams lightly Reinforced Below the Minimum Steel Reinforcement (최소철근량 이하로 보강된 강섬유보강 보의 휨성능 고찰)

  • Kang, Duk-Man;Park, Yong-Gul;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.35-44
    • /
    • 2017
  • In this study, steel fiber-reinforced concrete beams with ordinary steel reinforcements, that are below minimum steel reinforcement amount specified in domestic concrete structure design code, were tested in flexure until failure. Steel reinforcement ratio considered were 44%, 66%, 78% and 100% of the minimum steel reinforcement. Considered steel fiber volume fractions were 0.25%, 0.50%, 0.75% and 1.00%. In results, it is confirmed that steel fibers greatly improve crack performance. Also, the steel fibers contributed to increment in yield load not in ultimate load. But the increment was not greater than the reduction by steel reinforcement reduction. The use of steel fibers in RC beams lightly reinforced below the minimum reinforcement ratio specified design code reduced ductility greatly. Consequently, steel reinforcement ratio in steel fiber-reinforced beams lightly reinforced below the minimum steel reinforcement should be increased in order to enhance proper ductility.

Laboratory Test and Evaluation to Characterize the Cracking Resistance of Asphalt Mixtures (아스팔트 혼합물의 균열 저항성 평가 연구)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.9-15
    • /
    • 2004
  • The cracking resistance of asphalt mixtures is generally evaluated by measuring a single parameter (i.e., Tensile strength, Stiffness). However, the use of a single parameter has been questioned in the evaluation of asphalt mixture cracking performance. The focus of this study was to clearly identify the key properties and characteristics associated with the cracking resistance of asphalt mixtures. Results of fracture, creep, and strength tests at multiple loading rates performed on the modified and unmodified mixtures showed that the mixture cracking resistance was primarily affected by the rate of micro-damage accumulation. This was reflected in the m-value, without affecting the fracture energy limit. It was also observed that the short loading time (elastic) stiffness alone could not differentiate the mixture cracking resistance of the mixtures. It was concluded that the key to characterize the cracking resistance of asphalt mixture is in the evaluation of the combined effects of creep and failure limits. It was also found that a residual dissipated energy parameter measured from Superpave IDT strength test gave the quick and useful way to distinguish the difference of cracking resistance of asphalt mixtures. Failure strain in the longer-term creep test appeared to be a useful parameter for evaluating the combined effects of creep and failure limits of asphalt mixtures.

  • PDF

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

Tensile Stress-Crack Opening Relationship of Ultra High Performance Cementitious Composites(UHPCC) Used for Bridge Decks (바닥판 적용 초고성능 시멘트 복합체의 인장응력-균열개구 관계)

  • Kwon, Seung Hee;Lee, Seung Kook;Park, Sung Yong;Cho, Keun Hee;Cho, Jeong Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.46-54
    • /
    • 2013
  • Two different UHPCCs having different fiber lengths and volume fractions are considered to be applied to bridge decks. The objective of this study is to estimate cracking resistance of the two UHPCCs. The notched beam tests were performed with the UHPCCs, and the relationships between load and CMOD(Crack Mouth Opening Displacement) were obtained from the tests. The tensile stress and crack opening relationships optimally fitting the measured load-CMOD curves were found through the inverse analyses. The UHPCC with 2% volume fraction of 13 mm long fiber has lower fracture energy than the UHPCC with 0.5% and 1.0% volume fractions of 16.3 mm and 19.5 mm long fibers, respectively. It indicates that the latter UHPCC is more effective in uniformly distributing crack formation and reducing crack width.

Drying Shrinkage and Cracking Resisting Performance of Eco-cement Concrete mixing Fly-ash (플라이 애쉬를 혼입한 에코시멘트 콘크리트의 건조수축 및 균열저항 특성)

  • Yoo, Kwan-Jong;Seo, Tae-Seok;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.409-410
    • /
    • 2009
  • The eco-cement concrete using fly-ash was produced for the improvement of the compressive strength of the eco-cement concrete under the long term age, and compressive strength test, drying shrinkage test, uniaxial restraint shrinkage cracking test, and bond test were carried out. In this study, the cracking resistance performance was investigated.

  • PDF

Performance of Hybrid Fiber Reinforced Concrete at Elevated High Temperature (고온에서 하이브리드 섬유보강 콘크리트의 성능)

  • Won, Jong-Pil;Park, Kyung-Hoon;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.325-333
    • /
    • 2008
  • This study evaluated the mechanical performance, shrinkage crack and fire resistance of hybrid fiber (blended steel and polypropylene fiber with different diameter and length) reinforced concrete at elevated temperature. The compressive, splitting tensile, flexural, plastic shrinkage test were conducted to the evaluate the mechanical properties and the resistance of shrinkage crack. Also, the surface investigation, reduction rate of mass and residual compressive test were performed to evaluate the physical and mechanical properties after 400$^{\circ}C$, 600$^{\circ}C$, 800$^{\circ}C$ and 1,200$^{\circ}C$ exposure. Test results showed that the hybrid fiber reinforced concrete improved the mechanical performance, shrinkage crack and fire resistance. The reduction of performance with a temperature change were high at the temperature of $600\sim800^{\circ}C$.

Flexural Performance and Cracking Resistance of Continuous Composite Slab using Micro Steel Fibers (마이크로 강섬유 콘크리트를 적용한 연속 합성슬래브의 휨 및 균열 저항성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Gap-Deug;Choi, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • In the present study, to enhance the constructability, a composite slab system using deck plate and micro steel fiber concrete was studied. In the proposed slab system, on-situ re-bar placement is not required. Steel fibers replace the temperature reinforcement. The present study focused on the crack control at the slab top in the continuous composite slab without spliced bars. Eight continuous slabs with various parameters were tested under vertical loading. The test parameters were the amount and types of micro steel fibers, types of deck plate, and the use of top bars in the continuous slab. To evaluate the crack resistance of the slabs, crack widths were measured in the continuous slabs. The test results showed that although the top spliced bars were not used, cracking were restrained by large flexural stiffness of the composite sections.

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.