• Title/Summary/Keyword: 균열안전성평가

Search Result 182, Processing Time 0.026 seconds

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

가스배관 결함평가 현황

  • O, Gyu-Hwan;Yeom, Gyu-Jeong;Kim, U-Sik
    • Journal of the KSME
    • /
    • v.54 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • 운영 중인 가스배관에는 매우 낮은 빈도이긴 하지만 부식, 기계적 손상, 내압, 토양하중, 차량하중, 지반침하, 열하중, 균열 등이 생길 수 있다. 안정적인 가스공급과 안전한 배관 운영을 위해서는 손상배관에 대한 건전성 평가가 필요하다. 평가 방법은 국내외 규격을 적용하거나 배관 운영회사에서 독자적인 건전성 평가방안을 적용하면 된다. 결함평가 방안은 고압 가스배관뿐만 아니라, 중저압 가스배관, 압력용기, 원자력 배관, 화학플랜트 배관 등에 필요한 사항이다.

  • PDF

Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation (콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발)

  • Nam, Woo-Suk;Jung, Hyunjun;Park, Kyung-Han;Kim, Cheol-Min;Kim, Gyu-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members.

Damage Tolerance Analysis Using Surrogate Model (근사모델을 사용한 손상허용해석)

  • Jang, Byung-Wook;Im, Jae-Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.306-313
    • /
    • 2011
  • The damage tolerance analysis is required to guarantee the structural safety and the reliability for aircraft components. The damage tolerance method, which evaluate the life considering the initial crack, considers a fatigue design model of the aircraft main structure. The fatigue crack growth life should be calculated in damage tolerance analysis and the inspection time to define the replacement cycle. In this paper, the damage tolerance analysis is performed for a turbine wheel which has complex geometry. The equation of the stress intensity factor for complex geometry is hard to know, so that they are usually processed by finite element analysis which takes long time. To solve this problem, the stress intensity factors at specified crack are obtained by the FEA and the crack growth life is evaluated using the surrogate model which is generated by the regression analysis of the FEA data. From the results, the efficiency of the crack growth life calculation and the damage tolerance analysis could be increased by taking the surrogate model.

An Effect of Uplift Pressure Applied to Concrete Gravity Dam on the Stress Intensity Factor (중력식 콘크리트 댐에 작용하는 양압력이 응력확대계수에 미치는 영향)

  • Lee Young-Ho;Jang Hee-Suk;Kim Tae-Wan;Jin Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.841-850
    • /
    • 2004
  • The modeling of uplift pressure within dam, on the foundation on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams, i.e. crack stability in concrete dam can correctly be predicted when uplift pressures are accurately modelled. Current models consider a uniform uplift distribution, but recent experimental results show that it varies along the crack faces and the procedures for modeling uplift pressures are well established for the traditional hand-calculation methods, but this is not the case for finite element (FE) analysis. In large structures, such as dams, because of smaller size of the fracture process zone with respect to the structure size, limited errors should occur under the assumptions of linear elastic fracture mechanics (LEFM). In this paper, the fracture behaviour of concrete gravity dams mainly subjected to uplift Pressure at the crack face was studied. Triangular type, trapezoidal type and parabolic type distribution of the uplift pressure including uniform type were considered in case of evaluating stress intensity factor by surface integral method. The effects of body forces, overtopping pressures are also considered and a parametric study of gravity dams under the assumption of LEFM is performed.

Analysis of cause and deterioration about using 3-Arch tunnel (공용중인 3-Arch터널의 열화조사 및 원인분석)

  • Lee, Yu-Seok;Park, Sung-Woo;Whang, In-Baek;Shin, Yong-Suk;Kim, Sun-Gon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • This paper studied the cause of the deterioration of the four 3-Arch tunnels built in mid-1990. The common deteriorations of the four 3-Arch tunnels were longitudinal cracks, leakage and efflorescence at the same parts of lining concrete. Three fourths of 3-Arch tunnels, there was high percentage longitudinal cracks and a quarter was low frequency about longitudinal cracks. So the material reviewed to find out the differences between two groups in construction process and analysis was conducted such as non-destructive testing, precise visual survey and safety evaluation of one tunnel which had bad ground condition As the result, the tunnels were safety condition and the primary deterioration occurred during the construction process, namely, problems arrangement of rebar and the effects of the blast at middle tunnel.

Structural Safety Assessment of Independent Spherical LNG Tank(1st Report) - Fatigue Strength Analysis Based on the S-N Approach - (독립구형 LNG 탱크의 구조안전성 평가(제1보) - 피로균열 발생수명 예측 -)

  • In-Sik Nho;Yong-Yun Nam;Ho-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.132-140
    • /
    • 1993
  • The design of LNG ship needs very high level structural design/analysis technology compared with conventional ship types because it requires perfect security against the extremly dangerous and cryogenic cargo. Hence, present paper describes the general procedure of the structural safety assessment for independent tank type LNG ship, which contains following items. 1) Long term prediction of the wave induced stresses including ship motion analysis, structural analysis of hull and tank and stochastic analysis process of ocean waves. 2) Fatigue strength analysis of a tank structure based on the S-N approach. 3) Structural safety assessment against the fatigue crack propagation based on the LBF(Leak Before Failure) concept. The first report focuced on the item (1) (2) and example calculation was performed on a prototype LNG ship. The remained part will be covered by the second report.

  • PDF

Safety Margin Improvement Against Failure of Zr-2.5Nb Pressure Tube (Zr-2.5Nb압력관 파손에 대한 안전여유도 개선)

  • Jeong, Yong-Hwan;Kim, Young-Suk
    • Nuclear Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.775-783
    • /
    • 1995
  • This study is to assess the effects of increasing wall thickness on the safety margin of pressure tube in operating and of lowering initial hydrogen concentration on the DHC growth in respect to the improvement of the reliability of pressure tube in CANDU reactors. The pressure tube with thicker wall of 5.2 mm shows much higher safety margin for flaw tolerance by 25% than the current 4.2mmm tube. The thicker pressure tubes have a great benefit in LBB assessment including the initial crack depth at which DHC occurs, the crack length at onset of leaking and the available time for action. The resistance for the pressure tube ballooning at LOCA accident is also increased with the thicker tube. The calculations for Heq concentration after 20 years of operation as a function of wall thickness and initial hydrogen concentration show that the 5.2 mm nil thickness tube with 5 ppm initial hydrogen concentration is the most resistant to DHC. with the lower initial hydrogen concentration, TSS temperature for the precipitation or hydride decreases and the crack growth during cooldown reduces.

  • PDF

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.15-22
    • /
    • 2020
  • In this study, we propose an improvement method that can create U-Net model which detect fine concrete cracks by applying a weighted loss function. Because cracks in concrete are a factor that threatens safety, it is important to periodically check the condition and take prompt initial measures. However, currently, the visual inspection is mainly used in which the inspector directly inspects and evaluates with naked eyes. This has limitations not only in terms of accuracy, but also in terms of cost, time and safety. Accordingly, technologies using deep learning is being researched so that minute cracks generated in concrete structures can be detected quickly and accurately. As a result of attempting crack detection using U-Net in this study, it was confirmed that it could not detect minute cracks. Accordingly, as a result of verifying the performance of the model trained by applying the suggested weighted loss function, a highly reliable value (Accuracy) of 99% or higher and a harmonic average (F1_Score) of 89% to 92% was derived. The performance of the learning improvement plan was verified through the results of accurately and clearly detecting cracks.

Development of the Condition Assessment Scheme of Aged Ships (노후선박의 Condition Assessment Scheme의 개발)

  • 박영일;백점기;이제명;고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.77-82
    • /
    • 2004
  • This study presents reliability assessment of merchant ships with focus on hull girder ultimate limit state, taking into account the time-dependent effects of corrosion, fatigue cracking and local denting. Some considerations for establishing a reliability-based repair and maintenance scheme are also made so as to keep a ship's hull girder strength reliability at an acceptable level even later in life.

  • PDF